laurenok24 commited on
Commit
a0bb85b
·
verified ·
1 Parent(s): 687643c

Update models/detectron2/platform_detector_setup.py

Browse files
models/detectron2/platform_detector_setup.py CHANGED
@@ -1,10 +1,10 @@
1
  import sys, os, distutils.core
2
 
3
- os.system('python -m pip install pyyaml==5.3.1')
4
- dist = distutils.core.run_setup("./detectron2/setup.py")
5
- temp = ' '.join([f"'{x}'" for x in dist.install_requires])
6
- cmd = "python -m pip install {0}".format(temp)
7
- os.system(cmd)
8
  sys.path.insert(0, os.path.abspath('./detectron2'))
9
 
10
  import detectron2
@@ -26,10 +26,10 @@ def get_platform_detector():
26
  cfg = get_cfg()
27
  cfg.OUTPUT_DIR = "./output/platform/"
28
  # model = build_model(cfg) # returns a torch.nn.Module
29
- cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
30
  cfg.DATASETS.TEST = ()
31
  cfg.DATALOADER.NUM_WORKERS = 2
32
- cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
33
  cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people
34
  cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
35
  cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
 
1
  import sys, os, distutils.core
2
 
3
+ # os.system('python -m pip install pyyaml==5.3.1')
4
+ # dist = distutils.core.run_setup("./detectron2/setup.py")
5
+ # temp = ' '.join([f"'{x}'" for x in dist.install_requires])
6
+ # cmd = "python -m pip install {0}".format(temp)
7
+ # os.system(cmd)
8
  sys.path.insert(0, os.path.abspath('./detectron2'))
9
 
10
  import detectron2
 
26
  cfg = get_cfg()
27
  cfg.OUTPUT_DIR = "./output/platform/"
28
  # model = build_model(cfg) # returns a torch.nn.Module
29
+ cfg.merge_from_file(model_zoo.get_config_file("configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
30
  cfg.DATASETS.TEST = ()
31
  cfg.DATALOADER.NUM_WORKERS = 2
32
+ cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
33
  cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people
34
  cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
35
  cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset