laurenok24
commited on
Upload somersault_counter.py
Browse files- somersault_counter.py +153 -0
somersault_counter.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import math
|
3 |
+
|
4 |
+
def distance_point_to_line_segment(px, py, x1, y1, x2, y2):
|
5 |
+
# Calculate the squared distance from point (px, py) to the line segment [(x1, y1), (x2, y2)]
|
6 |
+
def sqr_distance_point_to_segment():
|
7 |
+
line_length_sq = (x2 - x1)**2 + (y2 - y1)**2
|
8 |
+
if line_length_sq == 0:
|
9 |
+
return (px - x1)**2 + (py - y1)**2
|
10 |
+
t = max(0, min(1, ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / line_length_sq))
|
11 |
+
return ((px - (x1 + t * (x2 - x1)))**2 + (py - (y1 + t * (y2 - y1)))**2)
|
12 |
+
|
13 |
+
# Calculate the closest point on the line segment to the given point (px, py)
|
14 |
+
def closest_point_on_line_segment():
|
15 |
+
line_length_sq = (x2 - x1)**2 + (y2 - y1)**2
|
16 |
+
if line_length_sq == 0:
|
17 |
+
return x1, y1
|
18 |
+
t = max(0, min(1, ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / line_length_sq))
|
19 |
+
closest_x = x1 + t * (x2 - x1)
|
20 |
+
closest_y = y1 + t * (y2 - y1)
|
21 |
+
return closest_x, closest_y
|
22 |
+
|
23 |
+
closest_point = closest_point_on_line_segment()
|
24 |
+
distance = math.sqrt(sqr_distance_point_to_segment())
|
25 |
+
|
26 |
+
return closest_point, distance
|
27 |
+
|
28 |
+
def min_distance_from_line_to_circle(line_start, line_end, circle_center, circle_radius):
|
29 |
+
closest_point, distance = distance_point_to_line_segment(circle_center[0], circle_center[1],
|
30 |
+
line_start[0], line_start[1],
|
31 |
+
line_end[0], line_end[1])
|
32 |
+
|
33 |
+
min_distance = max(0, distance - circle_radius)
|
34 |
+
return min_distance
|
35 |
+
|
36 |
+
|
37 |
+
# def twist_counter(pose_pred, prev_pose_pred=None, in_petal=False, petal_count=0):
|
38 |
+
# if pose_pred is None:
|
39 |
+
# return petal_count, in_petal
|
40 |
+
# min_dist = 0
|
41 |
+
# # Users/lokamoto/Comprehensive_AQA/output/joint_plots/FINAWorldChampionships2019_Women10m_final_r1_0
|
42 |
+
# pose_pred = pose_pred[0]
|
43 |
+
# vector1 = [pose_pred[2][0] - pose_pred[3][0], 0-(pose_pred[2][1] - pose_pred[3][1])]
|
44 |
+
# if prev_pose_pred is not None:
|
45 |
+
# prev_pose_pred = prev_pose_pred[0]
|
46 |
+
# prev_pose_pred = [prev_pose_pred[2][0] - prev_pose_pred[3][0], 0-(prev_pose_pred[2][1] - prev_pose_pred[3][1])]
|
47 |
+
# # m = (vector1[1] - prev_pose_pred[1])/(vector1[0] - prev_pose_pred[0])
|
48 |
+
# # b = prev_pose_pred[1] - m * prev_pose_pred[0]
|
49 |
+
# # min_dist = np.abs(b)/np.sqrt(m**2+1)
|
50 |
+
# min_dist = min_distance_from_line_to_circle(prev_pose_pred, vector1, (0, 0), 5)
|
51 |
+
|
52 |
+
# if min_dist is not None and in_petal and np.linalg.norm(vector1) > 5 and min_dist == 0: #and np.linalg.norm(vector1) > 8
|
53 |
+
# petal_count += 1
|
54 |
+
# # print('leaving petal')
|
55 |
+
# # print('going in new petal')
|
56 |
+
# elif not in_petal and np.linalg.norm(vector1) > 5: #and min_dist > 3: #and np.linalg.norm(vector1) > 8
|
57 |
+
# in_petal = True
|
58 |
+
# # print('going in petal')
|
59 |
+
# elif in_petal and np.linalg.norm(vector1) < 5:
|
60 |
+
# in_petal = False
|
61 |
+
# petal_count += 1
|
62 |
+
# # print('leaving petal')
|
63 |
+
# # print(vector)
|
64 |
+
# return petal_count, in_petal
|
65 |
+
|
66 |
+
def twist_counter(pose_pred, prev_pose_pred=None, in_petal=False, petal_count=0):
|
67 |
+
# if key[0].startswith('FINAWorldChampionships2019'):
|
68 |
+
# valid = 19
|
69 |
+
# outer = 3
|
70 |
+
# inner = 3
|
71 |
+
# elif key[0].startswith('FINADivingWorldCup2021'):
|
72 |
+
# valid = 19
|
73 |
+
# outer = 5.5
|
74 |
+
# inner = 5.5
|
75 |
+
valid = 17
|
76 |
+
outer = 10
|
77 |
+
inner = 9
|
78 |
+
if pose_pred is None:
|
79 |
+
return petal_count, in_petal
|
80 |
+
min_dist = 0
|
81 |
+
pose_pred = pose_pred[0]
|
82 |
+
vector1 = [pose_pred[2][0] - pose_pred[3][0], 0-(pose_pred[2][1] - pose_pred[3][1])]
|
83 |
+
if prev_pose_pred is not None:
|
84 |
+
prev_pose_pred = prev_pose_pred[0]
|
85 |
+
prev_pose_pred = [prev_pose_pred[2][0] - prev_pose_pred[3][0], 0-(prev_pose_pred[2][1] - prev_pose_pred[3][1])]
|
86 |
+
min_dist = min_distance_from_line_to_circle(prev_pose_pred, vector1, (0, 0), 0.5)
|
87 |
+
if np.linalg.norm(vector1) > valid:
|
88 |
+
return petal_count, in_petal
|
89 |
+
if min_dist is not None and in_petal and np.linalg.norm(vector1) > outer and min_dist == 0: #and np.linalg.norm(vector1) > 8
|
90 |
+
petal_count += 1
|
91 |
+
elif not in_petal and np.linalg.norm(vector1) > outer: #and min_dist > 3: #and np.linalg.norm(vector1) > 8
|
92 |
+
in_petal = True
|
93 |
+
elif in_petal and np.linalg.norm(vector1) < inner:
|
94 |
+
in_petal = False
|
95 |
+
petal_count += 1
|
96 |
+
return petal_count, in_petal
|
97 |
+
|
98 |
+
# def som_counter(pose_pred=None, prev_pose_pred=None, half_som_count=0, handstand=False):
|
99 |
+
# if pose_pred is None:
|
100 |
+
# return half_som_count
|
101 |
+
# pose_pred = pose_pred[0]
|
102 |
+
# vector1 = [pose_pred[7][0] - pose_pred[6][0], 0-(pose_pred[7][1] - pose_pred[6][1])] # flip y axis
|
103 |
+
# if (not handstand and half_som_count % 2 == 0) or (handstand and half_som_count %2 == 1):
|
104 |
+
# vector2 = [0, -1]
|
105 |
+
# else:
|
106 |
+
# vector2 = [0, 1]
|
107 |
+
# unit_vector_1 = vector1 / np.linalg.norm(vector1)
|
108 |
+
# unit_vector_2 = vector2 / np.linalg.norm(vector2)
|
109 |
+
# dot_product = np.dot(unit_vector_1, unit_vector_2)
|
110 |
+
# current_angle = math.degrees(np.arccos(dot_product))
|
111 |
+
|
112 |
+
# if prev_pose_pred is not None:
|
113 |
+
# prev_pose_pred = prev_pose_pred[0]
|
114 |
+
# prev_vector = [prev_pose_pred[7][0] - prev_pose_pred[6][0], 0-(prev_pose_pred[7][1] - prev_pose_pred[6][1])] # flip y axis
|
115 |
+
# prev_unit_vector = prev_vector / np.linalg.norm(prev_vector)
|
116 |
+
# prev_angle_diff = math.degrees(np.arccos(np.dot(unit_vector_1, prev_unit_vector)))
|
117 |
+
# # if prev_angle_diff > 120:
|
118 |
+
# # print('pose pred is probably off')
|
119 |
+
# # return half_som_count
|
120 |
+
|
121 |
+
# # print("unit_vector_1:", unit_vector_1)
|
122 |
+
# # print("looking for vector:", vector2)
|
123 |
+
# if current_angle < 80:
|
124 |
+
# half_som_count += 1
|
125 |
+
# return half_som_count
|
126 |
+
|
127 |
+
def som_counter(pose_pred=None, prev_pose_pred=None, half_som_count=0, handstand=False):
|
128 |
+
if pose_pred is None:
|
129 |
+
return half_som_count, True
|
130 |
+
pose_pred = pose_pred[0]
|
131 |
+
vector1 = [pose_pred[7][0] - pose_pred[6][0], 0-(pose_pred[7][1] - pose_pred[6][1])] # flip y axis
|
132 |
+
if (not handstand and half_som_count % 2 == 0) or (handstand and half_som_count %2 == 1):
|
133 |
+
vector2 = [0, -1]
|
134 |
+
else:
|
135 |
+
vector2 = [0, 1]
|
136 |
+
unit_vector_1 = vector1 / np.linalg.norm(vector1)
|
137 |
+
unit_vector_2 = vector2 / np.linalg.norm(vector2)
|
138 |
+
dot_product = np.dot(unit_vector_1, unit_vector_2)
|
139 |
+
current_angle = math.degrees(np.arccos(dot_product))
|
140 |
+
if prev_pose_pred is not None:
|
141 |
+
prev_pose_pred = prev_pose_pred[0]
|
142 |
+
prev_vector = [prev_pose_pred[7][0] - prev_pose_pred[6][0], 0-(prev_pose_pred[7][1] - prev_pose_pred[6][1])] # flip y axis
|
143 |
+
prev_unit_vector = prev_vector / np.linalg.norm(prev_vector)
|
144 |
+
prev_angle_diff = math.degrees(np.arccos(np.dot(unit_vector_1, prev_unit_vector)))
|
145 |
+
if prev_angle_diff > 115:
|
146 |
+
return half_som_count, True
|
147 |
+
|
148 |
+
# print("unit_vector_1:", unit_vector_1)
|
149 |
+
# print("looking for vector:", vector2)
|
150 |
+
if current_angle <= 80:
|
151 |
+
half_som_count += 1
|
152 |
+
return half_som_count, False
|
153 |
+
|