|
|
|
import logging |
|
import unittest |
|
from copy import deepcopy |
|
import torch |
|
from torch import nn |
|
|
|
from detectron2 import model_zoo |
|
from detectron2.config import get_cfg |
|
from detectron2.export.torchscript_patch import ( |
|
freeze_training_mode, |
|
patch_builtin_len, |
|
patch_instances, |
|
) |
|
from detectron2.layers import ShapeSpec |
|
from detectron2.modeling.proposal_generator.build import build_proposal_generator |
|
from detectron2.modeling.roi_heads import ( |
|
FastRCNNConvFCHead, |
|
KRCNNConvDeconvUpsampleHead, |
|
MaskRCNNConvUpsampleHead, |
|
StandardROIHeads, |
|
build_roi_heads, |
|
) |
|
from detectron2.projects import point_rend |
|
from detectron2.structures import BitMasks, Boxes, ImageList, Instances, RotatedBoxes |
|
from detectron2.utils.events import EventStorage |
|
from detectron2.utils.testing import assert_instances_allclose, random_boxes |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
""" |
|
Make sure the losses of ROIHeads/RPN do not change, to avoid |
|
breaking the forward logic by mistake. |
|
This relies on assumption that pytorch's RNG is stable. |
|
""" |
|
|
|
|
|
class ROIHeadsTest(unittest.TestCase): |
|
def test_roi_heads(self): |
|
torch.manual_seed(121) |
|
cfg = get_cfg() |
|
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" |
|
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 |
|
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" |
|
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5) |
|
cfg.MODEL.MASK_ON = True |
|
num_images = 2 |
|
images_tensor = torch.rand(num_images, 20, 30) |
|
image_sizes = [(10, 10), (20, 30)] |
|
images = ImageList(images_tensor, image_sizes) |
|
num_channels = 1024 |
|
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} |
|
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} |
|
|
|
image_shape = (15, 15) |
|
gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) |
|
gt_instance0 = Instances(image_shape) |
|
gt_instance0.gt_boxes = Boxes(gt_boxes0) |
|
gt_instance0.gt_classes = torch.tensor([2, 1]) |
|
gt_instance0.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) |
|
gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32) |
|
gt_instance1 = Instances(image_shape) |
|
gt_instance1.gt_boxes = Boxes(gt_boxes1) |
|
gt_instance1.gt_classes = torch.tensor([1, 2]) |
|
gt_instance1.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) |
|
gt_instances = [gt_instance0, gt_instance1] |
|
|
|
proposal_generator = build_proposal_generator(cfg, feature_shape) |
|
roi_heads = StandardROIHeads(cfg, feature_shape) |
|
|
|
with EventStorage(): |
|
proposals, proposal_losses = proposal_generator(images, features, gt_instances) |
|
_, detector_losses = roi_heads(images, features, proposals, gt_instances) |
|
|
|
detector_losses.update(proposal_losses) |
|
expected_losses = { |
|
"loss_cls": 4.5253729820251465, |
|
"loss_box_reg": 0.009785720147192478, |
|
"loss_mask": 0.693184494972229, |
|
"loss_rpn_cls": 0.08186662942171097, |
|
"loss_rpn_loc": 0.1104838103055954, |
|
} |
|
succ = all( |
|
torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) |
|
for name in detector_losses.keys() |
|
) |
|
self.assertTrue( |
|
succ, |
|
"Losses has changed! New losses: {}".format( |
|
{k: v.item() for k, v in detector_losses.items()} |
|
), |
|
) |
|
|
|
def test_rroi_heads(self): |
|
torch.manual_seed(121) |
|
cfg = get_cfg() |
|
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" |
|
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" |
|
cfg.MODEL.ROI_HEADS.NAME = "RROIHeads" |
|
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" |
|
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 |
|
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) |
|
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" |
|
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated" |
|
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1) |
|
num_images = 2 |
|
images_tensor = torch.rand(num_images, 20, 30) |
|
image_sizes = [(10, 10), (20, 30)] |
|
images = ImageList(images_tensor, image_sizes) |
|
num_channels = 1024 |
|
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} |
|
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} |
|
|
|
image_shape = (15, 15) |
|
gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]], dtype=torch.float32) |
|
gt_instance0 = Instances(image_shape) |
|
gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0) |
|
gt_instance0.gt_classes = torch.tensor([2, 1]) |
|
gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]], dtype=torch.float32) |
|
gt_instance1 = Instances(image_shape) |
|
gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1) |
|
gt_instance1.gt_classes = torch.tensor([1, 2]) |
|
gt_instances = [gt_instance0, gt_instance1] |
|
|
|
proposal_generator = build_proposal_generator(cfg, feature_shape) |
|
roi_heads = build_roi_heads(cfg, feature_shape) |
|
|
|
with EventStorage(): |
|
proposals, proposal_losses = proposal_generator(images, features, gt_instances) |
|
_, detector_losses = roi_heads(images, features, proposals, gt_instances) |
|
|
|
detector_losses.update(proposal_losses) |
|
expected_losses = { |
|
"loss_cls": 4.365657806396484, |
|
"loss_box_reg": 0.0015851043863222003, |
|
"loss_rpn_cls": 0.2427729219198227, |
|
"loss_rpn_loc": 0.3646621108055115, |
|
} |
|
succ = all( |
|
torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) |
|
for name in detector_losses.keys() |
|
) |
|
self.assertTrue( |
|
succ, |
|
"Losses has changed! New losses: {}".format( |
|
{k: v.item() for k, v in detector_losses.items()} |
|
), |
|
) |
|
|
|
def test_box_head_scriptability(self): |
|
input_shape = ShapeSpec(channels=1024, height=14, width=14) |
|
box_features = torch.randn(4, 1024, 14, 14) |
|
|
|
box_head = FastRCNNConvFCHead( |
|
input_shape, conv_dims=[512, 512], fc_dims=[1024, 1024] |
|
).eval() |
|
script_box_head = torch.jit.script(box_head) |
|
|
|
origin_output = box_head(box_features) |
|
script_output = script_box_head(box_features) |
|
self.assertTrue(torch.equal(origin_output, script_output)) |
|
|
|
def test_mask_head_scriptability(self): |
|
input_shape = ShapeSpec(channels=1024) |
|
mask_features = torch.randn(4, 1024, 14, 14) |
|
|
|
image_shapes = [(10, 10), (15, 15)] |
|
pred_instance0 = Instances(image_shapes[0]) |
|
pred_classes0 = torch.tensor([1, 2, 3], dtype=torch.int64) |
|
pred_instance0.pred_classes = pred_classes0 |
|
pred_instance1 = Instances(image_shapes[1]) |
|
pred_classes1 = torch.tensor([4], dtype=torch.int64) |
|
pred_instance1.pred_classes = pred_classes1 |
|
|
|
mask_head = MaskRCNNConvUpsampleHead( |
|
input_shape, num_classes=80, conv_dims=[256, 256] |
|
).eval() |
|
|
|
|
|
origin_outputs = mask_head(mask_features, deepcopy([pred_instance0, pred_instance1])) |
|
|
|
fields = {"pred_masks": torch.Tensor, "pred_classes": torch.Tensor} |
|
with freeze_training_mode(mask_head), patch_instances(fields) as NewInstances: |
|
sciript_mask_head = torch.jit.script(mask_head) |
|
pred_instance0 = NewInstances.from_instances(pred_instance0) |
|
pred_instance1 = NewInstances.from_instances(pred_instance1) |
|
script_outputs = sciript_mask_head(mask_features, [pred_instance0, pred_instance1]) |
|
|
|
for origin_ins, script_ins in zip(origin_outputs, script_outputs): |
|
assert_instances_allclose(origin_ins, script_ins, rtol=0) |
|
|
|
def test_keypoint_head_scriptability(self): |
|
input_shape = ShapeSpec(channels=1024, height=14, width=14) |
|
keypoint_features = torch.randn(4, 1024, 14, 14) |
|
|
|
image_shapes = [(10, 10), (15, 15)] |
|
pred_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6], [1, 5, 2, 8]], dtype=torch.float32) |
|
pred_instance0 = Instances(image_shapes[0]) |
|
pred_instance0.pred_boxes = Boxes(pred_boxes0) |
|
pred_boxes1 = torch.tensor([[7, 3, 10, 5]], dtype=torch.float32) |
|
pred_instance1 = Instances(image_shapes[1]) |
|
pred_instance1.pred_boxes = Boxes(pred_boxes1) |
|
|
|
keypoint_head = KRCNNConvDeconvUpsampleHead( |
|
input_shape, num_keypoints=17, conv_dims=[512, 512] |
|
).eval() |
|
origin_outputs = keypoint_head( |
|
keypoint_features, deepcopy([pred_instance0, pred_instance1]) |
|
) |
|
|
|
fields = { |
|
"pred_boxes": Boxes, |
|
"pred_keypoints": torch.Tensor, |
|
"pred_keypoint_heatmaps": torch.Tensor, |
|
} |
|
with freeze_training_mode(keypoint_head), patch_instances(fields) as NewInstances: |
|
script_keypoint_head = torch.jit.script(keypoint_head) |
|
pred_instance0 = NewInstances.from_instances(pred_instance0) |
|
pred_instance1 = NewInstances.from_instances(pred_instance1) |
|
script_outputs = script_keypoint_head( |
|
keypoint_features, [pred_instance0, pred_instance1] |
|
) |
|
|
|
for origin_ins, script_ins in zip(origin_outputs, script_outputs): |
|
assert_instances_allclose(origin_ins, script_ins, rtol=0) |
|
|
|
def test_StandardROIHeads_scriptability(self): |
|
cfg = get_cfg() |
|
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" |
|
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 |
|
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" |
|
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5) |
|
cfg.MODEL.MASK_ON = True |
|
cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.01 |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.01 |
|
num_images = 2 |
|
images_tensor = torch.rand(num_images, 20, 30) |
|
image_sizes = [(10, 10), (20, 30)] |
|
images = ImageList(images_tensor, image_sizes) |
|
num_channels = 1024 |
|
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} |
|
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} |
|
|
|
roi_heads = StandardROIHeads(cfg, feature_shape).eval() |
|
|
|
proposal0 = Instances(image_sizes[0]) |
|
proposal_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) |
|
proposal0.proposal_boxes = Boxes(proposal_boxes0) |
|
proposal0.objectness_logits = torch.tensor([0.5, 0.7], dtype=torch.float32) |
|
|
|
proposal1 = Instances(image_sizes[1]) |
|
proposal_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32) |
|
proposal1.proposal_boxes = Boxes(proposal_boxes1) |
|
proposal1.objectness_logits = torch.tensor([0.1, 0.9], dtype=torch.float32) |
|
proposals = [proposal0, proposal1] |
|
|
|
pred_instances, _ = roi_heads(images, features, proposals) |
|
fields = { |
|
"objectness_logits": torch.Tensor, |
|
"proposal_boxes": Boxes, |
|
"pred_classes": torch.Tensor, |
|
"scores": torch.Tensor, |
|
"pred_masks": torch.Tensor, |
|
"pred_boxes": Boxes, |
|
"pred_keypoints": torch.Tensor, |
|
"pred_keypoint_heatmaps": torch.Tensor, |
|
} |
|
with freeze_training_mode(roi_heads), patch_instances(fields) as new_instances: |
|
proposal0 = new_instances.from_instances(proposal0) |
|
proposal1 = new_instances.from_instances(proposal1) |
|
proposals = [proposal0, proposal1] |
|
scripted_rot_heads = torch.jit.script(roi_heads) |
|
scripted_pred_instances, _ = scripted_rot_heads(images, features, proposals) |
|
|
|
for instance, scripted_instance in zip(pred_instances, scripted_pred_instances): |
|
assert_instances_allclose(instance, scripted_instance, rtol=0) |
|
|
|
def test_PointRend_mask_head_tracing(self): |
|
cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml") |
|
point_rend.add_pointrend_config(cfg) |
|
cfg.MODEL.ROI_HEADS.IN_FEATURES = ["p2", "p3"] |
|
cfg.MODEL.ROI_MASK_HEAD.NAME = "PointRendMaskHead" |
|
cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE = "" |
|
cfg.MODEL.ROI_MASK_HEAD.POINT_HEAD_ON = True |
|
chan = 256 |
|
head = point_rend.PointRendMaskHead( |
|
cfg, |
|
{ |
|
"p2": ShapeSpec(channels=chan, stride=4), |
|
"p3": ShapeSpec(channels=chan, stride=8), |
|
}, |
|
) |
|
|
|
def gen_inputs(h, w, N): |
|
p2 = torch.rand(1, chan, h, w) |
|
p3 = torch.rand(1, chan, h // 2, w // 2) |
|
boxes = random_boxes(N, max_coord=h) |
|
return p2, p3, boxes |
|
|
|
class Wrap(nn.ModuleDict): |
|
def forward(self, p2, p3, boxes): |
|
features = { |
|
"p2": p2, |
|
"p3": p3, |
|
} |
|
inst = Instances((p2.shape[2] * 4, p2.shape[3] * 4)) |
|
inst.pred_boxes = Boxes(boxes) |
|
inst.pred_classes = torch.zeros(inst.__len__(), dtype=torch.long) |
|
out = self.head(features, [inst])[0] |
|
return out.pred_masks |
|
|
|
model = Wrap({"head": head}) |
|
model.eval() |
|
with torch.no_grad(), patch_builtin_len(): |
|
traced = torch.jit.trace(model, gen_inputs(302, 208, 20)) |
|
inputs = gen_inputs(100, 120, 30) |
|
out_eager = model(*inputs) |
|
out_trace = traced(*inputs) |
|
self.assertTrue(torch.allclose(out_eager, out_trace)) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|