|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.nn.modules.utils import _pair |
|
|
|
from detectron2.layers.wrappers import _NewEmptyTensorOp |
|
|
|
|
|
class TridentConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
paddings=0, |
|
dilations=1, |
|
groups=1, |
|
num_branch=1, |
|
test_branch_idx=-1, |
|
bias=False, |
|
norm=None, |
|
activation=None, |
|
): |
|
super(TridentConv, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = _pair(kernel_size) |
|
self.num_branch = num_branch |
|
self.stride = _pair(stride) |
|
self.groups = groups |
|
self.with_bias = bias |
|
if isinstance(paddings, int): |
|
paddings = [paddings] * self.num_branch |
|
if isinstance(dilations, int): |
|
dilations = [dilations] * self.num_branch |
|
self.paddings = [_pair(padding) for padding in paddings] |
|
self.dilations = [_pair(dilation) for dilation in dilations] |
|
self.test_branch_idx = test_branch_idx |
|
self.norm = norm |
|
self.activation = activation |
|
|
|
assert len({self.num_branch, len(self.paddings), len(self.dilations)}) == 1 |
|
|
|
self.weight = nn.Parameter( |
|
torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) |
|
) |
|
if bias: |
|
self.bias = nn.Parameter(torch.Tensor(out_channels)) |
|
else: |
|
self.bias = None |
|
|
|
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") |
|
if self.bias is not None: |
|
nn.init.constant_(self.bias, 0) |
|
|
|
def forward(self, inputs): |
|
num_branch = self.num_branch if self.training or self.test_branch_idx == -1 else 1 |
|
assert len(inputs) == num_branch |
|
|
|
if inputs[0].numel() == 0: |
|
output_shape = [ |
|
(i + 2 * p - (di * (k - 1) + 1)) // s + 1 |
|
for i, p, di, k, s in zip( |
|
inputs[0].shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride |
|
) |
|
] |
|
output_shape = [input[0].shape[0], self.weight.shape[0]] + output_shape |
|
return [_NewEmptyTensorOp.apply(input, output_shape) for input in inputs] |
|
|
|
if self.training or self.test_branch_idx == -1: |
|
outputs = [ |
|
F.conv2d(input, self.weight, self.bias, self.stride, padding, dilation, self.groups) |
|
for input, dilation, padding in zip(inputs, self.dilations, self.paddings) |
|
] |
|
else: |
|
outputs = [ |
|
F.conv2d( |
|
inputs[0], |
|
self.weight, |
|
self.bias, |
|
self.stride, |
|
self.paddings[self.test_branch_idx], |
|
self.dilations[self.test_branch_idx], |
|
self.groups, |
|
) |
|
] |
|
|
|
if self.norm is not None: |
|
outputs = [self.norm(x) for x in outputs] |
|
if self.activation is not None: |
|
outputs = [self.activation(x) for x in outputs] |
|
return outputs |
|
|
|
def extra_repr(self): |
|
tmpstr = "in_channels=" + str(self.in_channels) |
|
tmpstr += ", out_channels=" + str(self.out_channels) |
|
tmpstr += ", kernel_size=" + str(self.kernel_size) |
|
tmpstr += ", num_branch=" + str(self.num_branch) |
|
tmpstr += ", test_branch_idx=" + str(self.test_branch_idx) |
|
tmpstr += ", stride=" + str(self.stride) |
|
tmpstr += ", paddings=" + str(self.paddings) |
|
tmpstr += ", dilations=" + str(self.dilations) |
|
tmpstr += ", groups=" + str(self.groups) |
|
tmpstr += ", bias=" + str(self.with_bias) |
|
return tmpstr |
|
|