|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
BN_MOMENTUM = 0.1 |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, |
|
bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion, |
|
momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, |
|
num_channels, fuse_method, multi_scale_output=True): |
|
super(HighResolutionModule, self).__init__() |
|
self._check_branches( |
|
num_branches, blocks, num_blocks, num_inchannels, num_channels) |
|
|
|
self.num_inchannels = num_inchannels |
|
self.fuse_method = fuse_method |
|
self.num_branches = num_branches |
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
self.branches = self._make_branches( |
|
num_branches, blocks, num_blocks, num_channels) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.relu = nn.ReLU(True) |
|
|
|
def _check_branches(self, num_branches, blocks, num_blocks, |
|
num_inchannels, num_channels): |
|
if num_branches != len(num_blocks): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( |
|
num_branches, len(num_blocks)) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_channels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( |
|
num_branches, len(num_channels)) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_inchannels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( |
|
num_branches, len(num_inchannels)) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, |
|
stride=1): |
|
downsample = None |
|
if stride != 1 or \ |
|
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.num_inchannels[branch_index], |
|
num_channels[branch_index] * block.expansion, |
|
kernel_size=1, stride=stride, bias=False |
|
), |
|
nn.BatchNorm2d( |
|
num_channels[branch_index] * block.expansion, |
|
momentum=BN_MOMENTUM |
|
), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.num_inchannels[branch_index], |
|
num_channels[branch_index], |
|
stride, |
|
downsample |
|
) |
|
) |
|
self.num_inchannels[branch_index] = \ |
|
num_channels[branch_index] * block.expansion |
|
for i in range(1, num_blocks[branch_index]): |
|
layers.append( |
|
block( |
|
self.num_inchannels[branch_index], |
|
num_channels[branch_index] |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
branches = [] |
|
|
|
for i in range(num_branches): |
|
branches.append( |
|
self._make_one_branch(i, block, num_blocks, num_channels) |
|
) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
if self.num_branches == 1: |
|
return None |
|
|
|
num_branches = self.num_branches |
|
num_inchannels = self.num_inchannels |
|
fuse_layers = [] |
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_inchannels[j], |
|
num_inchannels[i], |
|
1, 1, 0, bias=False |
|
), |
|
nn.BatchNorm2d(num_inchannels[i]), |
|
nn.Upsample(scale_factor=2**(j-i), mode='nearest') |
|
) |
|
) |
|
elif j == i: |
|
fuse_layer.append(None) |
|
else: |
|
conv3x3s = [] |
|
for k in range(i-j): |
|
if k == i - j - 1: |
|
num_outchannels_conv3x3 = num_inchannels[i] |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, 2, 1, bias=False |
|
), |
|
nn.BatchNorm2d(num_outchannels_conv3x3) |
|
) |
|
) |
|
else: |
|
num_outchannels_conv3x3 = num_inchannels[j] |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, 2, 1, bias=False |
|
), |
|
nn.BatchNorm2d(num_outchannels_conv3x3), |
|
nn.ReLU(True) |
|
) |
|
) |
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
def get_num_inchannels(self): |
|
return self.num_inchannels |
|
|
|
def forward(self, x): |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i in range(self.num_branches): |
|
x[i] = self.branches[i](x[i]) |
|
|
|
x_fuse = [] |
|
|
|
for i in range(len(self.fuse_layers)): |
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) |
|
for j in range(1, self.num_branches): |
|
if i == j: |
|
y = y + x[j] |
|
else: |
|
y = y + self.fuse_layers[i][j](x[j]) |
|
x_fuse.append(self.relu(y)) |
|
|
|
return x_fuse |
|
|
|
|
|
blocks_dict = { |
|
'BASIC': BasicBlock, |
|
'BOTTLENECK': Bottleneck |
|
} |
|
|
|
|
|
class PoseHighResolutionNet(nn.Module): |
|
|
|
def __init__(self, cfg, **kwargs): |
|
self.inplanes = 64 |
|
extra = cfg['MODEL']['EXTRA'] |
|
super(PoseHighResolutionNet, self).__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, |
|
bias=False) |
|
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.layer1 = self._make_layer(Bottleneck, 64, 4) |
|
|
|
self.stage2_cfg = extra['STAGE2'] |
|
num_channels = self.stage2_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage2_cfg['BLOCK']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
self.transition1 = self._make_transition_layer([256], num_channels) |
|
self.stage2, pre_stage_channels = self._make_stage( |
|
self.stage2_cfg, num_channels) |
|
|
|
self.stage3_cfg = extra['STAGE3'] |
|
num_channels = self.stage3_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage3_cfg['BLOCK']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
self.transition2 = self._make_transition_layer( |
|
pre_stage_channels, num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage( |
|
self.stage3_cfg, num_channels) |
|
|
|
self.stage4_cfg = extra['STAGE4'] |
|
num_channels = self.stage4_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage4_cfg['BLOCK']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
self.transition3 = self._make_transition_layer( |
|
pre_stage_channels, num_channels) |
|
self.stage4, pre_stage_channels = self._make_stage( |
|
self.stage4_cfg, num_channels, multi_scale_output=False) |
|
|
|
self.final_layer = nn.Conv2d( |
|
in_channels=pre_stage_channels[0], |
|
out_channels=cfg['MODEL']['NUM_JOINTS'], |
|
kernel_size=extra['FINAL_CONV_KERNEL'], |
|
stride=1, |
|
padding=1 if extra['FINAL_CONV_KERNEL'] == 3 else 0 |
|
) |
|
|
|
self.pretrained_layers = extra['PRETRAINED_LAYERS'] |
|
|
|
def _make_transition_layer( |
|
self, num_channels_pre_layer, num_channels_cur_layer): |
|
num_branches_cur = len(num_channels_cur_layer) |
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
if i < num_branches_pre: |
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_channels_pre_layer[i], |
|
num_channels_cur_layer[i], |
|
3, 1, 1, bias=False |
|
), |
|
nn.BatchNorm2d(num_channels_cur_layer[i]), |
|
nn.ReLU(inplace=True) |
|
) |
|
) |
|
else: |
|
transition_layers.append(None) |
|
else: |
|
conv3x3s = [] |
|
for j in range(i+1-num_branches_pre): |
|
inchannels = num_channels_pre_layer[-1] |
|
outchannels = num_channels_cur_layer[i] \ |
|
if j == i-num_branches_pre else inchannels |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
inchannels, outchannels, 3, 2, 1, bias=False |
|
), |
|
nn.BatchNorm2d(outchannels), |
|
nn.ReLU(inplace=True) |
|
) |
|
) |
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False |
|
), |
|
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_stage(self, layer_config, num_inchannels, |
|
multi_scale_output=True): |
|
num_modules = layer_config['NUM_MODULES'] |
|
num_branches = layer_config['NUM_BRANCHES'] |
|
num_blocks = layer_config['NUM_BLOCKS'] |
|
num_channels = layer_config['NUM_CHANNELS'] |
|
block = blocks_dict[layer_config['BLOCK']] |
|
fuse_method = layer_config['FUSE_METHOD'] |
|
|
|
modules = [] |
|
for i in range(num_modules): |
|
|
|
if not multi_scale_output and i == num_modules - 1: |
|
reset_multi_scale_output = False |
|
else: |
|
reset_multi_scale_output = True |
|
|
|
modules.append( |
|
HighResolutionModule( |
|
num_branches, |
|
block, |
|
num_blocks, |
|
num_inchannels, |
|
num_channels, |
|
fuse_method, |
|
reset_multi_scale_output |
|
) |
|
) |
|
num_inchannels = modules[-1].get_num_inchannels() |
|
|
|
return nn.Sequential(*modules), num_inchannels |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
|
|
x_list = [] |
|
for i in range(self.stage2_cfg['NUM_BRANCHES']): |
|
if self.transition1[i] is not None: |
|
x_list.append(self.transition1[i](x)) |
|
else: |
|
x_list.append(x) |
|
y_list = self.stage2(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage3_cfg['NUM_BRANCHES']): |
|
if self.transition2[i] is not None: |
|
x_list.append(self.transition2[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage3(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage4_cfg['NUM_BRANCHES']): |
|
if self.transition3[i] is not None: |
|
x_list.append(self.transition3[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage4(x_list) |
|
|
|
x = self.final_layer(y_list[0]) |
|
|
|
return x |
|
|
|
def init_weights(self, pretrained=''): |
|
logger.info('=> init weights from normal distribution') |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
|
|
nn.init.normal_(m.weight, std=0.001) |
|
for name, _ in m.named_parameters(): |
|
if name in ['bias']: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.ConvTranspose2d): |
|
nn.init.normal_(m.weight, std=0.001) |
|
for name, _ in m.named_parameters(): |
|
if name in ['bias']: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
if os.path.isfile(pretrained): |
|
pretrained_state_dict = torch.load(pretrained) |
|
logger.info('=> loading pretrained model {}'.format(pretrained)) |
|
|
|
need_init_state_dict = {} |
|
for name, m in pretrained_state_dict.items(): |
|
if name.split('.')[0] in self.pretrained_layers \ |
|
or self.pretrained_layers[0] is '*': |
|
need_init_state_dict[name] = m |
|
self.load_state_dict(need_init_state_dict, strict=False) |
|
elif pretrained: |
|
logger.error('=> please download pre-trained models first!') |
|
raise ValueError('{} is not exist!'.format(pretrained)) |
|
|
|
|
|
def get_pose_net(cfg, is_train, **kwargs): |
|
model = PoseHighResolutionNet(cfg, **kwargs) |
|
|
|
if is_train and cfg['MODEL']['INIT_WEIGHTS']: |
|
model.init_weights(cfg['MODEL']['PRETRAINED']) |
|
|
|
return model |
|
|