NSAQA / models /detectron2 /springboard_detector_setup.py
laurenok24's picture
Upload 6 files
b41b87f verified
raw
history blame
2.55 kB
import sys, os, distutils.core
# os.system('python -m pip install pyyaml==5.3.1')
# dist = distutils.core.run_setup("./detectron2/setup.py")
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
# cmd = "python -m pip install {0}".format(temp)
# os.system(cmd)
sys.path.insert(0, os.path.abspath('./detectron2'))
import detectron2
import cv2
from detectron2.utils.logger import setup_logger
setup_logger()
# from detectron2.modeling import build_model
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.utils.visualizer import Visualizer
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data.datasets import register_coco_instances
def get_springboard_detector():
cfg = get_cfg()
cfg.OUTPUT_DIR = "./output/springboard/"
# model = build_model(cfg) # returns a torch.nn.Module
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
cfg.SOLVER.STEPS = [] # do not decay learning rate
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
predictor = DefaultPredictor(cfg)
return predictor
# register_coco_instances("springboard_trains", {}, "./coco_annotations/springboard/train.json", "../data/Boards/spring")
# register_coco_instances("springboard_vals", {}, "./coco_annotations/springboard/val.json", "../data/Boards/spring")
# from detectron2.utils.visualizer import ColorMode
# splash_metadata = MetadataCatalog.get('springboard_vals')
# dataset_dicts = DatasetCatalog.get("springboard_vals")