NSAQA / models /detectron2 /diver_detector_setup.py
laurenok24's picture
Upload 6 files
b41b87f verified
raw
history blame
1.59 kB
import sys, os, distutils.core
# os.system('python -m pip install pyyaml==5.3.1')
# dist = distutils.core.run_setup("./detectron2/setup.py")
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
# cmd = "python -m pip install {0}".format(temp)
# os.system(cmd)
sys.path.insert(0, os.path.abspath('./detectron2'))
import detectron2
import cv2
from detectron2.utils.logger import setup_logger
setup_logger()
# from detectron2.modeling import build_model
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data.datasets import register_coco_instances
def get_diver_detector():
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.OUTPUT_DIR = "./output/diver/"
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (ballon). (see https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)
diver_detector = DefaultPredictor(cfg)
return diver_detector