import sys, os, distutils.core | |
# os.system('python -m pip install pyyaml==5.3.1') | |
# dist = distutils.core.run_setup("./detectron2/setup.py") | |
# temp = ' '.join([f"'{x}'" for x in dist.install_requires]) | |
# cmd = "python -m pip install {0}".format(temp) | |
# os.system(cmd) | |
sys.path.insert(0, os.path.abspath('./detectron2')) | |
import detectron2 | |
import cv2 | |
from detectron2.utils.logger import setup_logger | |
setup_logger() | |
# from detectron2.modeling import build_model | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog, DatasetCatalog | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.data.datasets import register_coco_instances | |
def get_platform_detector(): | |
cfg = get_cfg() | |
cfg.OUTPUT_DIR = "./output/platform/" | |
# model = build_model(cfg) # returns a torch.nn.Module | |
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
cfg.DATASETS.TEST = () | |
cfg.DATALOADER.NUM_WORKERS = 2 | |
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo | |
cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people | |
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR | |
cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset | |
cfg.SOLVER.STEPS = [] # do not decay learning rate | |
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512) | |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 | |
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold | |
predictor = DefaultPredictor(cfg) | |
return predictor | |
# register_coco_instances("springboard_trains", {}, "./coco_annotations/springboard/train.json", "../data/Boards/spring") | |
# register_coco_instances("springboard_vals", {}, "./coco_annotations/springboard/val.json", "../data/Boards/spring") | |
# from detectron2.utils.visualizer import ColorMode | |
# splash_metadata = MetadataCatalog.get('springboard_vals') | |
# dataset_dicts = DatasetCatalog.get("springboard_vals") | |