|
|
|
import numpy as np |
|
import unittest |
|
from typing import Dict |
|
import torch |
|
|
|
from detectron2.config import instantiate |
|
from detectron2.structures import Boxes, Instances |
|
|
|
|
|
class TestBaseHungarianTracker(unittest.TestCase): |
|
def setUp(self): |
|
self._img_size = np.array([600, 800]) |
|
self._prev_boxes = np.array( |
|
[ |
|
[101, 101, 200, 200], |
|
[301, 301, 450, 450], |
|
] |
|
).astype(np.float32) |
|
self._prev_scores = np.array([0.9, 0.9]) |
|
self._prev_classes = np.array([1, 1]) |
|
self._prev_masks = np.ones((2, 600, 800)).astype("uint8") |
|
self._curr_boxes = np.array( |
|
[ |
|
[302, 303, 451, 452], |
|
[101, 102, 201, 203], |
|
] |
|
).astype(np.float32) |
|
self._curr_scores = np.array([0.95, 0.85]) |
|
self._curr_classes = np.array([1, 1]) |
|
self._curr_masks = np.ones((2, 600, 800)).astype("uint8") |
|
|
|
self._prev_instances = { |
|
"image_size": self._img_size, |
|
"pred_boxes": self._prev_boxes, |
|
"scores": self._prev_scores, |
|
"pred_classes": self._prev_classes, |
|
"pred_masks": self._prev_masks, |
|
} |
|
self._prev_instances = self._convertDictPredictionToInstance(self._prev_instances) |
|
self._curr_instances = { |
|
"image_size": self._img_size, |
|
"pred_boxes": self._curr_boxes, |
|
"scores": self._curr_scores, |
|
"pred_classes": self._curr_classes, |
|
"pred_masks": self._curr_masks, |
|
} |
|
self._curr_instances = self._convertDictPredictionToInstance(self._curr_instances) |
|
|
|
self._max_num_instances = 200 |
|
self._max_lost_frame_count = 0 |
|
self._min_box_rel_dim = 0.02 |
|
self._min_instance_period = 1 |
|
self._track_iou_threshold = 0.5 |
|
|
|
def _convertDictPredictionToInstance(self, prediction: Dict) -> Instances: |
|
""" |
|
convert prediction from Dict to D2 Instances format |
|
""" |
|
res = Instances( |
|
image_size=torch.IntTensor(prediction["image_size"]), |
|
pred_boxes=Boxes(torch.FloatTensor(prediction["pred_boxes"])), |
|
pred_masks=torch.IntTensor(prediction["pred_masks"]), |
|
pred_classes=torch.IntTensor(prediction["pred_classes"]), |
|
scores=torch.FloatTensor(prediction["scores"]), |
|
) |
|
return res |
|
|
|
def test_init(self): |
|
cfg = { |
|
"_target_": "detectron2.tracking.hungarian_tracker.BaseHungarianTracker", |
|
"video_height": self._img_size[0], |
|
"video_width": self._img_size[1], |
|
"max_num_instances": self._max_num_instances, |
|
"max_lost_frame_count": self._max_lost_frame_count, |
|
"min_box_rel_dim": self._min_box_rel_dim, |
|
"min_instance_period": self._min_instance_period, |
|
"track_iou_threshold": self._track_iou_threshold, |
|
} |
|
tracker = instantiate(cfg) |
|
self.assertTrue(tracker._video_height == self._img_size[0]) |
|
|
|
def test_initialize_extra_fields(self): |
|
cfg = { |
|
"_target_": "detectron2.tracking.hungarian_tracker.BaseHungarianTracker", |
|
"video_height": self._img_size[0], |
|
"video_width": self._img_size[1], |
|
"max_num_instances": self._max_num_instances, |
|
"max_lost_frame_count": self._max_lost_frame_count, |
|
"min_box_rel_dim": self._min_box_rel_dim, |
|
"min_instance_period": self._min_instance_period, |
|
"track_iou_threshold": self._track_iou_threshold, |
|
} |
|
tracker = instantiate(cfg) |
|
instances = tracker._initialize_extra_fields(self._curr_instances) |
|
self.assertTrue(instances.has("ID")) |
|
self.assertTrue(instances.has("ID_period")) |
|
self.assertTrue(instances.has("lost_frame_count")) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|