|
|
|
import itertools |
|
import math |
|
import operator |
|
import unittest |
|
import torch |
|
from torch.utils import data |
|
from torch.utils.data.sampler import SequentialSampler |
|
|
|
from detectron2.data.build import worker_init_reset_seed |
|
from detectron2.data.common import DatasetFromList, ToIterableDataset |
|
from detectron2.data.samplers import ( |
|
GroupedBatchSampler, |
|
InferenceSampler, |
|
RepeatFactorTrainingSampler, |
|
TrainingSampler, |
|
) |
|
from detectron2.utils.env import seed_all_rng |
|
|
|
|
|
class TestGroupedBatchSampler(unittest.TestCase): |
|
def test_missing_group_id(self): |
|
sampler = SequentialSampler(list(range(100))) |
|
group_ids = [1] * 100 |
|
samples = GroupedBatchSampler(sampler, group_ids, 2) |
|
|
|
for mini_batch in samples: |
|
self.assertEqual(len(mini_batch), 2) |
|
|
|
def test_groups(self): |
|
sampler = SequentialSampler(list(range(100))) |
|
group_ids = [1, 0] * 50 |
|
samples = GroupedBatchSampler(sampler, group_ids, 2) |
|
|
|
for mini_batch in samples: |
|
self.assertEqual((mini_batch[0] + mini_batch[1]) % 2, 0) |
|
|
|
|
|
class TestSamplerDeterministic(unittest.TestCase): |
|
def test_to_iterable(self): |
|
sampler = TrainingSampler(100, seed=10) |
|
gt_output = list(itertools.islice(sampler, 100)) |
|
self.assertEqual(set(gt_output), set(range(100))) |
|
|
|
dataset = DatasetFromList(list(range(100))) |
|
dataset = ToIterableDataset(dataset, sampler) |
|
data_loader = data.DataLoader(dataset, num_workers=0, collate_fn=operator.itemgetter(0)) |
|
|
|
output = list(itertools.islice(data_loader, 100)) |
|
self.assertEqual(output, gt_output) |
|
|
|
data_loader = data.DataLoader( |
|
dataset, |
|
num_workers=2, |
|
collate_fn=operator.itemgetter(0), |
|
worker_init_fn=worker_init_reset_seed, |
|
|
|
) |
|
output = list(itertools.islice(data_loader, 100)) |
|
|
|
self.assertEqual(output, gt_output) |
|
|
|
def test_training_sampler_seed(self): |
|
seed_all_rng(42) |
|
sampler = TrainingSampler(30) |
|
data = list(itertools.islice(sampler, 65)) |
|
|
|
seed_all_rng(42) |
|
sampler = TrainingSampler(30) |
|
seed_all_rng(999) |
|
data2 = list(itertools.islice(sampler, 65)) |
|
self.assertEqual(data, data2) |
|
|
|
|
|
class TestRepeatFactorTrainingSampler(unittest.TestCase): |
|
def test_repeat_factors_from_category_frequency(self): |
|
repeat_thresh = 0.5 |
|
|
|
dataset_dicts = [ |
|
{"annotations": [{"category_id": 0}, {"category_id": 1}]}, |
|
{"annotations": [{"category_id": 0}]}, |
|
{"annotations": []}, |
|
] |
|
|
|
rep_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( |
|
dataset_dicts, repeat_thresh |
|
) |
|
|
|
expected_rep_factors = torch.tensor([math.sqrt(3 / 2), 1.0, 1.0]) |
|
self.assertTrue(torch.allclose(rep_factors, expected_rep_factors)) |
|
|
|
|
|
class TestInferenceSampler(unittest.TestCase): |
|
def test_local_indices(self): |
|
sizes = [0, 16, 2, 42] |
|
world_sizes = [5, 2, 3, 4] |
|
|
|
expected_results = [ |
|
[range(0) for _ in range(5)], |
|
[range(8), range(8, 16)], |
|
[range(1), range(1, 2), range(0)], |
|
[range(11), range(11, 22), range(22, 32), range(32, 42)], |
|
] |
|
|
|
for size, world_size, expected_result in zip(sizes, world_sizes, expected_results): |
|
with self.subTest(f"size={size}, world_size={world_size}"): |
|
local_indices = [ |
|
InferenceSampler._get_local_indices(size, world_size, r) |
|
for r in range(world_size) |
|
] |
|
self.assertEqual(local_indices, expected_result) |
|
|