File size: 10,279 Bytes
2114261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from microprograms.temporal_segmentation.entry import entry_microprogram_one_frame
from microprograms.temporal_segmentation.somersault import somersault_microprogram_one_frame
from microprograms.temporal_segmentation.twist import twist_microprogram_one_frame
from microprograms.temporal_segmentation.start_takeoff import takeoff_microprogram_one_frame
from microprograms.errors.distance_from_springboard_micro_program import board_end
from microprograms.errors.splash_micro_program import get_splash_from_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_springboard_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_platform_for_one_frame
from microprograms.errors.angles_micro_programs import applyFeetApartError
from microprograms.errors.angles_micro_programs import applyPositionTightnessError
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
from models.detectron2.diver_detector_setup import get_diver_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
from models.detectron2.splash_detector_setup import get_splash_detector
from somersault_counter import som_counter, twist_counter
from microprograms.errors.over_rotation import over_rotation
from temporal_segmentation import detect_on_board
import pickle
import os
import math
import numpy as np
import cv2
def getDiveInfo_from_diveNum(diveNum):
handstand = (diveNum[0] == '6')
expected_som = int(diveNum[2])
if len(diveNum) == 5:
expected_twists = int(diveNum[3])
else:
expected_twists = 0
if diveNum[0] == '1' or diveNum[0] == '3' or diveNum[:2] == '51' or diveNum[:2] == '53' or diveNum[:2] == '61' or diveNum[:2] == '63':
back_facing = False
else:
back_facing = True
if diveNum[0] == '1' or diveNum[:2] == '51' or diveNum[:2] == '61':
expected_direction = 'front'
elif diveNum[0] == '2' or diveNum[:2] == '52' or diveNum[:2] == '62':
expected_direction = 'back'
elif diveNum[0] == '3' or diveNum[:2] == '53' or diveNum[:2] == '63':
expected_direction = 'reverse'
elif diveNum[0] == '4':
expected_direction = 'inward'
if diveNum[-1] == 'b':
position = 'pike'
elif diveNum[-1] == 'c':
position = 'tuck'
else:
position = 'free'
return handstand, expected_som, expected_twists, back_facing, expected_direction, position
def getAllErrorsAndSegmentation(first_folder, second_folder, diveNum, board_side=None, platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
handstand, expected_som, expected_twists, back_facing, expected_direction, position = getDiveInfo_from_diveNum(diveNum)
# first_folder = input("what is the first folder? Ex: 01, FINAWorldChampionships2019_Women10m_final_r1, etc. ")
# second_folder = input("what is the second folder? (dive within the first folder)")
dive_data = {}
takeoff = []
twist = []
som = []
entry = []
distance_from_board = []
position_tightness = []
feet_apart = []
over_under_rotation = []
splash = []
pose_preds = []
diver_boxes = []
above_boards = []
on_boards = []
som_counts = []
twist_counts = []
board_end_coords = []
plat_outputs = []
splash_pred_masks = []
above_board = True
on_board = True
if platform_detector is None:
platform_detector = get_platform_detector()
if splash_detector is None:
splash_detector = get_splash_detector()
if diver_detector is None:
diver_detector = get_diver_detector()
if pose_model is None:
pose_model = get_pose_model()
key = (first_folder, int(second_folder))
dive_folder_num = "{}_{}".format(first_folder, second_folder)
directory = './FineDiving/datasets/FINADiving_MTL_256s/{}/{}/'.format(first_folder, second_folder)
file_names = os.listdir(directory)
# with open('./output/joint_plots/{}/pose_preds.pkl'.format(dive_folder_num), 'rb') as pickle_file:
# pose_preds = pickle.load(pickle_file)
j = 0
prev_pred = None
som_prev_pred = None
half_som_count=0
petal_count = 0
in_petal = False
for i in range(len(file_names)):
# pose_pred = None
filepath = directory + file_names[i]
# print("filepath:", filepath)
if file_names[i][-4:] != ".jpg":
continue
diver_box, pose_pred = get_pose_estimation(filepath, diver_detector=diver_detector, pose_model=pose_model)
# pose_pred = data[key]['pose_pred'][i]
diver_boxes.append(diver_box)
pose_preds.append(pose_pred)
# if j < len(pose_preds):
# print("filepath has pose_pred:", filepath)
# pose_pred = pose_preds[j]
# j += 1
calculated_half_som_count, skip = som_counter(pose_pred, prev_pose_pred=som_prev_pred, half_som_count=half_som_count, handstand=handstand)
if not skip:
som_prev_pred = pose_pred
calculated_petal_count, calculated_in_petal = twist_counter(pose_pred, prev_pose_pred=prev_pred, in_petal=in_petal, petal_count=petal_count)
im = cv2.imread(filepath)
plat_output = platform_detector(im)
plat_outputs.append(plat_output)
board_end_coord = board_end(plat_output, board_side=board_side)
board_end_coords.append(board_end_coord)
# if board_end_coord is None:
# print("NO BOARD NONE CRYING")
if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
above_board=False
if on_board and detect_on_board(board_end_coord, board_side, pose_pred, handstand) is not None and not detect_on_board(board_end_coord, board_side, pose_pred, handstand):
on_board = False
if above_board:
above_boards.append(1)
else:
above_boards.append(0)
if on_board:
on_boards.append(1)
else:
on_boards.append(0)
calculated_takeoff = takeoff_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred)
calculated_twist = twist_microprogram_one_frame(filepath, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, diver_detector=diver_detector, pose_model=pose_model)
calculated_som = somersault_microprogram_one_frame(filepath, pose_pred=pose_pred, on_board=on_board, expected_som=expected_som, half_som_count=half_som_count, expected_twists=expected_twists, petal_count=petal_count, diver_detector=diver_detector, pose_model=pose_model)
calculated_entry = entry_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, splash_detector=splash_detector, visualize=False, dive_folder_num=dive_folder_num)
if calculated_som == 1:
half_som_count = calculated_half_som_count
elif calculated_twist == 1:
half_som_count = calculated_half_som_count
petal_count = calculated_petal_count
in_petal = calculated_in_petal
# distance from board
dist = calculate_distance_from_platform_for_one_frame(filepath, visualize=False, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
distance_from_board.append(dist)
position_tightness.append(applyPositionTightnessError(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
feet_apart.append(applyFeetApartError(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
over_under_rotation.append(over_rotation(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
splash_area, splash_pred_mask = get_splash_from_one_frame(filepath, predictor=splash_detector, visualize=False)
splash.append(splash_area)
splash_pred_masks.append(splash_pred_mask)
takeoff.append(calculated_takeoff)
twist.append(calculated_twist)
som.append(calculated_som)
entry.append(calculated_entry)
som_counts.append(half_som_count)
twist_counts.append(petal_count)
prev_pred = pose_pred
dive_data['pose_pred'] = pose_preds
dive_data['takeoff'] = takeoff
dive_data['twist'] = twist
dive_data['som'] = som
dive_data['entry'] = entry
dive_data['distance_from_board'] = distance_from_board
dive_data['position_tightness'] = position_tightness
dive_data['feet_apart'] = feet_apart
dive_data['over_under_rotation'] = over_under_rotation
dive_data['splash'] = splash
dive_data['above_boards'] = above_boards
dive_data['on_boards'] = on_boards
dive_data['som_counts'] = som_counts
dive_data['twist_counts'] = twist_counts
dive_data['board_end_coords'] = board_end_coords
dive_data['diver_boxes'] = diver_boxes
dive_data['splash_pred_masks'] = splash_pred_masks
dive_data['plat_outputs'] = plat_outputs
dive_data['board_side'] = board_side
dive_data['is_handstand'] = handstand
dive_data['direction'] = expected_direction
print("takeoff", takeoff)
print("twist", twist)
print("som", som)
print("entry", entry)
print("distance_from_board", distance_from_board)
print("position_tightness", position_tightness)
print("feet_apart", feet_apart)
print("over_under_rotation", over_under_rotation)
print("splash", splash)
print("above_boards", above_boards)
print("on_boards", on_boards)
print("som_counts", som_counts)
print("twist_counts", twist_counts)
print("board_end_coords", board_end_coords)
print("diver_boxes", diver_boxes)
return dive_data
|