File size: 15,161 Bytes
2114261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from microprograms.temporal_segmentation.entry import entry_microprogram_one_frame
from microprograms.temporal_segmentation.somersault import somersault_microprogram_one_frame
from microprograms.temporal_segmentation.twist import twist_microprogram_one_frame
from microprograms.temporal_segmentation.start_takeoff import takeoff_microprogram_one_frame
from microprograms.errors.distance_from_springboard_micro_program import board_end
from microprograms.errors.splash_micro_program import *
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_springboard_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_platform_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import find_which_side_board_on
from microprograms.errors.angles_micro_programs import applyFeetApartError
from microprograms.errors.angles_micro_programs import applyPositionTightnessError
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
from models.detectron2.diver_detector_setup import get_diver_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
from models.detectron2.splash_detector_setup import get_splash_detector
from somersault_counter import som_counter, twist_counter
from microprograms.errors.over_rotation import over_rotation
from temporal_segmentation import detect_on_board
from dive_recognition_functions import *
from scoring_functions import get_scale_factor
import gradio as gr
import pickle
import os
import math
import numpy as np
import cv2

with open('segmentation_error_data.pkl', 'rb') as f:
    data = pickle.load(f)

def getDiveInfo_from_diveNum(diveNum):
    handstand = (diveNum[0] == '6')
    expected_som = int(diveNum[2])
    if len(diveNum) == 5:
        expected_twists = int(diveNum[3])
    else:
        expected_twists = 0
    if diveNum[0] == '1' or diveNum[0] == '3' or diveNum[:2] == '51' or diveNum[:2] == '53' or diveNum[:2] == '61' or diveNum[:2] == '63':
        back_facing = False
    else:
        back_facing = True
    if diveNum[0] == '1' or diveNum[:2] == '51' or diveNum[:2] == '61':
        expected_direction = 'front'
    elif diveNum[0] == '2' or diveNum[:2] == '52' or diveNum[:2] == '62':
        expected_direction = 'back'
    elif diveNum[0] == '3' or diveNum[:2] == '53' or diveNum[:2] == '63':
        expected_direction = 'reverse'
    elif diveNum[0] == '4':
        expected_direction = 'inward'
    if diveNum[-1] == 'b':
        position = 'pike'
    elif diveNum[-1] == 'c':
        position = 'tuck'
    else:
        position = 'free'
    return handstand, expected_som, expected_twists, back_facing, expected_direction, position

def getDiveInfo_from_symbols(frames, dive_data=None, platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
    print("Getting dive info from symbols...")
    if dive_data is None:
        print("somethings not getting passed in properly")
        dive_data = abstractSymbols(frames, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)

    # get above_boards, on_boards, and position_tightness
    above_board = True
    on_board = True
    above_boards = []
    on_boards = []
    position_tightness = []
    distances = []
    prev_board_coord = None
    for i in range(len(dive_data['pose_pred'])):
        pose_pred = dive_data['pose_pred'][i]
        board_end_coord =  dive_data['board_end_coords'][i]
        if board_end_coord is not None and prev_board_coord is not None:
            distances.append(math.dist(board_end_coord, prev_board_coord))
            if math.dist(board_end_coord, prev_board_coord) > 150:
                position_tightness.append(applyPositionTightnessError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
                if above_board:
                    above_boards.append(1)
                else:
                    above_boards.append(0)
                if on_board:
                    on_boards.append(1)
                else:
                    on_boards.append(0)
                continue
        if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
            above_board=False
        if on_board:
            handstand = is_handstand(dive_data)
            calculate_on_board = detect_on_board(board_end_coord, dive_data['board_side'], pose_pred, handstand)
            if calculate_on_board is not None and not calculate_on_board:
                on_board = False
        if above_board:
            above_boards.append(1)
        else:
            above_boards.append(0)
        if on_board:
            on_boards.append(1)
        else:
            on_boards.append(0)
        prev_board_coord = board_end_coord
        position_tightness.append(applyPositionTightnessError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
    dive_data['on_boards'] = on_boards
    dive_data['above_boards'] = above_boards
    dive_data['position_tightness'] = position_tightness

    ## handstand and som_count##
    expected_som, handstand = som_counter_full_dive(dive_data)

    ## twist_count
    expected_twists = twist_counter_full_dive(dive_data)

    ## direction: front, back, reverse, inward
    expected_direction = get_direction(dive_data)

    return handstand, expected_som, expected_twists, expected_direction, dive_data


def abstractSymbols(frames, progress=gr.Progress(), platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
    print("Abstracting symbols...")
    splashes = []
    pose_preds = []
    board_sides = []
    plat_outputs = []
    diver_boxes = []
    splash_pred_masks = []
    if platform_detector is None:
        platform_detector = get_platform_detector()
    if splash_detector is None:
        splash_detector = get_splash_detector()
    if diver_detector is None:
        diver_detector = get_diver_detector()
    if pose_model is None:
        pose_model = get_pose_model()
    num_frames = len(frames)
    i = 0
    for frame in frames:
        progress(i/num_frames, desc="Abstracting Symbols")
        plat_output = platform_detector(frame)
        plat_outputs.append(plat_output)
        board_side = find_which_side_board_on(plat_output)
        if board_side is not None:
            board_sides.append(board_side)
        diver_box, pose_pred = get_pose_estimation(filepath="", image_bgr=frame, diver_detector=diver_detector, pose_model=pose_model)
        pose_preds.append(pose_pred)
        diver_boxes.append(diver_box)
        splash_area, splash_pred_mask = get_splash_from_one_frame(filepath="", im=frame, predictor=splash_detector, visualize=False)
        splash_pred_masks.append(splash_pred_mask)
        splashes.append(splash_area)
        i+=1
    dive_data = {}
    dive_data['plat_outputs'] = plat_outputs
    dive_data['pose_pred'] = pose_preds
    dive_data['splash'] = splashes
    dive_data['splash_pred_masks'] = splash_pred_masks
    dive_data['board_sides'] = board_sides
    board_sides.sort()
    board_side = board_sides[len(board_sides)//2]
    dive_data['board_side'] = board_side
    dive_data['diver_boxes'] = diver_boxes

     # get board_end_coords
    board_end_coords = []
    for plat_output in dive_data['plat_outputs']:
        board_end_coord = board_end(plat_output, board_side=dive_data['board_side'])
        board_end_coords.append(board_end_coord)
    dive_data['board_end_coords'] = board_end_coords

    return dive_data

def getAllErrorsAndSegmentation_newVids(frames, dive_data, progress=gr.Progress(), diveNum="", board_side=None, platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
    print("in getAllErrorsAndSegmentation function...")
    if len(frames) != len(dive_data['pose_pred']):
        raise gr.Error("Abstract Symbols first!")
    if diveNum != "":
        dive_num_given = True
        handstand, expected_som, expected_twists, back_facing, expected_direction, position = getDiveInfo_from_diveNum(diveNum)
    else:
        dive_num_given = False
        handstand, expected_som, expected_twists, expected_direction, dive_data = getDiveInfo_from_symbols(frames, dive_data=dive_data, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)

    if not dive_num_given:
        above_boards = dive_data['above_boards']
        on_boards = dive_data['on_boards']
        position_tightness = dive_data['position_tightness']
        board_end_coords = dive_data['board_end_coords']
    else:
        above_board = True
        on_board = True
        above_boards = []
        on_boards = []
        board_end_coords = []
        position_tightness = []
    splash = dive_data['splash'] 
    diver_boxes = dive_data['diver_boxes']   
    board_side = dive_data['board_side']
    pose_preds = dive_data['pose_pred']
    takeoff = []
    twist = []
    som = []
    entry = []
    distance_from_board = []
    feet_apart = []
    over_under_rotation = []
    som_counts = []
    twist_counts = []
    
    if platform_detector is None:
        platform_detector = get_platform_detector()
    if splash_detector is None:
        splash_detector = get_splash_detector()
    if diver_detector is None:
        diver_detector = get_diver_detector()
    if pose_model is None:
        pose_model = get_pose_model()
    j = 0
    prev_pred = None
    som_prev_pred = None
    half_som_count=0
    petal_count = 0
    in_petal = False
    num_frames = len(frames)
    for i in range(num_frames):
        progress(i/num_frames, desc="Calculating Dive Errors")
        pose_pred = pose_preds[i]
        calculated_half_som_count, skip = som_counter(pose_pred, prev_pose_pred=som_prev_pred, half_som_count=half_som_count, handstand=handstand)
        if not skip:
            som_prev_pred = pose_pred
        calculated_petal_count, calculated_in_petal = twist_counter(pose_pred, prev_pose_pred=prev_pred, in_petal=in_petal, petal_count=petal_count)
        if dive_num_given:
            outputs = platform_detector(frames[i])
            board_end_coord = board_end(outputs, board_side=board_side)
            board_end_coords.append(board_end_coord)
            if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
                above_board=False
            if on_board and detect_on_board(board_end_coord, board_side, pose_pred, handstand) is not None and not detect_on_board(board_end_coord, board_side, pose_pred, handstand):
                on_board = False
            if above_board:
                above_boards.append(1)
            else:
                above_boards.append(0)
            if on_board:
                on_boards.append(1)
            else:
                on_boards.append(0)
        else:
            board_end_coord = board_end_coords[i]
            above_board = (above_boards[i] == 1)
            on_board = (on_boards[i] == 1)
        calculated_takeoff = takeoff_microprogram_one_frame(filepath="", above_board=above_board, on_board=on_board, pose_pred=pose_pred)
        calculated_twist = twist_microprogram_one_frame(filepath="", on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, diver_detector=diver_detector, pose_model=pose_model)
        calculated_som = somersault_microprogram_one_frame(filepath="", pose_pred=pose_pred, on_board=on_board, expected_som=expected_som, half_som_count=half_som_count, expected_twists=expected_twists, petal_count=petal_count, diver_detector=diver_detector, pose_model=pose_model)
        calculated_entry = entry_microprogram_one_frame(filepath="", frame=frames[i], above_board=above_board, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, splash_detector=splash_detector, visualize=False)
        if calculated_som == 1:
            half_som_count = calculated_half_som_count
        elif calculated_twist == 1:
            half_som_count = calculated_half_som_count
            petal_count = calculated_petal_count
            in_petal = calculated_in_petal
        # distance from board
        dist = calculate_distance_from_platform_for_one_frame(filepath="", im=frames[i], visualize=False, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
        distance_from_board.append(dist)
        if dive_num_given:
            position_tightness.append(applyPositionTightnessError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
            # splash.append(get_splash_from_one_frame(filepath="", im=frames[i], predictor=splash_detector, visualize=False))
        feet_apart.append(applyFeetApartError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
        over_under_rotation.append(over_rotation(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
        takeoff.append(calculated_takeoff)
        twist.append(calculated_twist)
        som.append(calculated_som)
        entry.append(calculated_entry)
        som_counts.append(half_som_count)
        twist_counts.append(petal_count)
        prev_pred = pose_pred
    print("takeoff", takeoff)
    print("twist", twist)
    print("som", som)
    print("entry", entry)
    print("distance_from_board", distance_from_board)
    print("position_tightness", position_tightness)
    print("feet_apart", feet_apart)
    print("over_under_rotation", over_under_rotation)
    print("splash", splash)
    print("above_boards", above_boards)
    print("on_boards", on_boards)
    print("som_counts", som_counts)
    print("twist_counts", twist_counts)
    print("board_end_coords", board_end_coords)
    print("diver_boxes", diver_boxes)

    print("saving data into dive_data dictionary...")
    dive_data['takeoff'] = takeoff
    dive_data['twist'] = twist
    dive_data['som'] = som
    dive_data['entry'] = entry
    dive_data['distance_from_board'] = distance_from_board
    dive_data['position_tightness'] = position_tightness
    dive_data['feet_apart'] = feet_apart
    dive_data['over_under_rotation'] = over_under_rotation
    dive_data['above_boards'] = above_boards
    dive_data['on_boards'] = on_boards
    dive_data['som_counts'] = som_counts
    dive_data['twist_counts'] = twist_counts
    dive_data['board_end_coords'] = board_end_coords
    dive_data['is_handstand'] = handstand
    dive_data['direction'] = expected_direction
    return dive_data