File size: 15,165 Bytes
2114261 ba67987 2114261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
from microprograms.temporal_segmentation.entry import entry_microprogram_one_frame
from microprograms.temporal_segmentation.somersault import somersault_microprogram_one_frame
from microprograms.temporal_segmentation.twist import twist_microprogram_one_frame
from microprograms.temporal_segmentation.start_takeoff import takeoff_microprogram_one_frame
from microprograms.errors.distance_from_springboard_micro_program import board_end
from microprograms.errors.splash_micro_program import *
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_springboard_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_platform_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import find_which_side_board_on
from microprograms.errors.angles_micro_programs import applyFeetApartError
from microprograms.errors.angles_micro_programs import applyPositionTightnessError
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
from models.detectron2.diver_detector_setup import get_diver_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
from models.detectron2.splash_detector_setup import get_splash_detector
from somersault_counter import som_counter, twist_counter
from microprograms.errors.over_rotation import over_rotation
from temporal_segmentation import detect_on_board
from dive_recognition_functions import *
from scoring_functions import get_scale_factor
import gradio as gr
import pickle
import os
import math
import numpy as np
import cv2
# with open('segmentation_error_data.pkl', 'rb') as f:
# data = pickle.load(f)
def getDiveInfo_from_diveNum(diveNum):
handstand = (diveNum[0] == '6')
expected_som = int(diveNum[2])
if len(diveNum) == 5:
expected_twists = int(diveNum[3])
else:
expected_twists = 0
if diveNum[0] == '1' or diveNum[0] == '3' or diveNum[:2] == '51' or diveNum[:2] == '53' or diveNum[:2] == '61' or diveNum[:2] == '63':
back_facing = False
else:
back_facing = True
if diveNum[0] == '1' or diveNum[:2] == '51' or diveNum[:2] == '61':
expected_direction = 'front'
elif diveNum[0] == '2' or diveNum[:2] == '52' or diveNum[:2] == '62':
expected_direction = 'back'
elif diveNum[0] == '3' or diveNum[:2] == '53' or diveNum[:2] == '63':
expected_direction = 'reverse'
elif diveNum[0] == '4':
expected_direction = 'inward'
if diveNum[-1] == 'b':
position = 'pike'
elif diveNum[-1] == 'c':
position = 'tuck'
else:
position = 'free'
return handstand, expected_som, expected_twists, back_facing, expected_direction, position
def getDiveInfo_from_symbols(frames, dive_data=None, platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
print("Getting dive info from symbols...")
if dive_data is None:
print("somethings not getting passed in properly")
dive_data = abstractSymbols(frames, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
# get above_boards, on_boards, and position_tightness
above_board = True
on_board = True
above_boards = []
on_boards = []
position_tightness = []
distances = []
prev_board_coord = None
for i in range(len(dive_data['pose_pred'])):
pose_pred = dive_data['pose_pred'][i]
board_end_coord = dive_data['board_end_coords'][i]
if board_end_coord is not None and prev_board_coord is not None:
distances.append(math.dist(board_end_coord, prev_board_coord))
if math.dist(board_end_coord, prev_board_coord) > 150:
position_tightness.append(applyPositionTightnessError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
if above_board:
above_boards.append(1)
else:
above_boards.append(0)
if on_board:
on_boards.append(1)
else:
on_boards.append(0)
continue
if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
above_board=False
if on_board:
handstand = is_handstand(dive_data)
calculate_on_board = detect_on_board(board_end_coord, dive_data['board_side'], pose_pred, handstand)
if calculate_on_board is not None and not calculate_on_board:
on_board = False
if above_board:
above_boards.append(1)
else:
above_boards.append(0)
if on_board:
on_boards.append(1)
else:
on_boards.append(0)
prev_board_coord = board_end_coord
position_tightness.append(applyPositionTightnessError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
dive_data['on_boards'] = on_boards
dive_data['above_boards'] = above_boards
dive_data['position_tightness'] = position_tightness
## handstand and som_count##
expected_som, handstand = som_counter_full_dive(dive_data)
## twist_count
expected_twists = twist_counter_full_dive(dive_data)
## direction: front, back, reverse, inward
expected_direction = get_direction(dive_data)
return handstand, expected_som, expected_twists, expected_direction, dive_data
def abstractSymbols(frames, progress=gr.Progress(), platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
print("Abstracting symbols...")
splashes = []
pose_preds = []
board_sides = []
plat_outputs = []
diver_boxes = []
splash_pred_masks = []
if platform_detector is None:
platform_detector = get_platform_detector()
if splash_detector is None:
splash_detector = get_splash_detector()
if diver_detector is None:
diver_detector = get_diver_detector()
if pose_model is None:
pose_model = get_pose_model()
num_frames = len(frames)
i = 0
for frame in frames:
progress(i/num_frames, desc="Abstracting Symbols")
plat_output = platform_detector(frame)
plat_outputs.append(plat_output)
board_side = find_which_side_board_on(plat_output)
if board_side is not None:
board_sides.append(board_side)
diver_box, pose_pred = get_pose_estimation(filepath="", image_bgr=frame, diver_detector=diver_detector, pose_model=pose_model)
pose_preds.append(pose_pred)
diver_boxes.append(diver_box)
splash_area, splash_pred_mask = get_splash_from_one_frame(filepath="", im=frame, predictor=splash_detector, visualize=False)
splash_pred_masks.append(splash_pred_mask)
splashes.append(splash_area)
i+=1
dive_data = {}
dive_data['plat_outputs'] = plat_outputs
dive_data['pose_pred'] = pose_preds
dive_data['splash'] = splashes
dive_data['splash_pred_masks'] = splash_pred_masks
dive_data['board_sides'] = board_sides
board_sides.sort()
board_side = board_sides[len(board_sides)//2]
dive_data['board_side'] = board_side
dive_data['diver_boxes'] = diver_boxes
# get board_end_coords
board_end_coords = []
for plat_output in dive_data['plat_outputs']:
board_end_coord = board_end(plat_output, board_side=dive_data['board_side'])
board_end_coords.append(board_end_coord)
dive_data['board_end_coords'] = board_end_coords
return dive_data
def getAllErrorsAndSegmentation_newVids(frames, dive_data, progress=gr.Progress(), diveNum="", board_side=None, platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
print("in getAllErrorsAndSegmentation function...")
if len(frames) != len(dive_data['pose_pred']):
raise gr.Error("Abstract Symbols first!")
if diveNum != "":
dive_num_given = True
handstand, expected_som, expected_twists, back_facing, expected_direction, position = getDiveInfo_from_diveNum(diveNum)
else:
dive_num_given = False
handstand, expected_som, expected_twists, expected_direction, dive_data = getDiveInfo_from_symbols(frames, dive_data=dive_data, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
if not dive_num_given:
above_boards = dive_data['above_boards']
on_boards = dive_data['on_boards']
position_tightness = dive_data['position_tightness']
board_end_coords = dive_data['board_end_coords']
else:
above_board = True
on_board = True
above_boards = []
on_boards = []
board_end_coords = []
position_tightness = []
splash = dive_data['splash']
diver_boxes = dive_data['diver_boxes']
board_side = dive_data['board_side']
pose_preds = dive_data['pose_pred']
takeoff = []
twist = []
som = []
entry = []
distance_from_board = []
feet_apart = []
over_under_rotation = []
som_counts = []
twist_counts = []
if platform_detector is None:
platform_detector = get_platform_detector()
if splash_detector is None:
splash_detector = get_splash_detector()
if diver_detector is None:
diver_detector = get_diver_detector()
if pose_model is None:
pose_model = get_pose_model()
j = 0
prev_pred = None
som_prev_pred = None
half_som_count=0
petal_count = 0
in_petal = False
num_frames = len(frames)
for i in range(num_frames):
progress(i/num_frames, desc="Calculating Dive Errors")
pose_pred = pose_preds[i]
calculated_half_som_count, skip = som_counter(pose_pred, prev_pose_pred=som_prev_pred, half_som_count=half_som_count, handstand=handstand)
if not skip:
som_prev_pred = pose_pred
calculated_petal_count, calculated_in_petal = twist_counter(pose_pred, prev_pose_pred=prev_pred, in_petal=in_petal, petal_count=petal_count)
if dive_num_given:
outputs = platform_detector(frames[i])
board_end_coord = board_end(outputs, board_side=board_side)
board_end_coords.append(board_end_coord)
if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
above_board=False
if on_board and detect_on_board(board_end_coord, board_side, pose_pred, handstand) is not None and not detect_on_board(board_end_coord, board_side, pose_pred, handstand):
on_board = False
if above_board:
above_boards.append(1)
else:
above_boards.append(0)
if on_board:
on_boards.append(1)
else:
on_boards.append(0)
else:
board_end_coord = board_end_coords[i]
above_board = (above_boards[i] == 1)
on_board = (on_boards[i] == 1)
calculated_takeoff = takeoff_microprogram_one_frame(filepath="", above_board=above_board, on_board=on_board, pose_pred=pose_pred)
calculated_twist = twist_microprogram_one_frame(filepath="", on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, diver_detector=diver_detector, pose_model=pose_model)
calculated_som = somersault_microprogram_one_frame(filepath="", pose_pred=pose_pred, on_board=on_board, expected_som=expected_som, half_som_count=half_som_count, expected_twists=expected_twists, petal_count=petal_count, diver_detector=diver_detector, pose_model=pose_model)
calculated_entry = entry_microprogram_one_frame(filepath="", frame=frames[i], above_board=above_board, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, splash_detector=splash_detector, visualize=False)
if calculated_som == 1:
half_som_count = calculated_half_som_count
elif calculated_twist == 1:
half_som_count = calculated_half_som_count
petal_count = calculated_petal_count
in_petal = calculated_in_petal
# distance from board
dist = calculate_distance_from_platform_for_one_frame(filepath="", im=frames[i], visualize=False, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
distance_from_board.append(dist)
if dive_num_given:
position_tightness.append(applyPositionTightnessError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
# splash.append(get_splash_from_one_frame(filepath="", im=frames[i], predictor=splash_detector, visualize=False))
feet_apart.append(applyFeetApartError(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
over_under_rotation.append(over_rotation(filepath="", pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
takeoff.append(calculated_takeoff)
twist.append(calculated_twist)
som.append(calculated_som)
entry.append(calculated_entry)
som_counts.append(half_som_count)
twist_counts.append(petal_count)
prev_pred = pose_pred
print("takeoff", takeoff)
print("twist", twist)
print("som", som)
print("entry", entry)
print("distance_from_board", distance_from_board)
print("position_tightness", position_tightness)
print("feet_apart", feet_apart)
print("over_under_rotation", over_under_rotation)
print("splash", splash)
print("above_boards", above_boards)
print("on_boards", on_boards)
print("som_counts", som_counts)
print("twist_counts", twist_counts)
print("board_end_coords", board_end_coords)
print("diver_boxes", diver_boxes)
print("saving data into dive_data dictionary...")
dive_data['takeoff'] = takeoff
dive_data['twist'] = twist
dive_data['som'] = som
dive_data['entry'] = entry
dive_data['distance_from_board'] = distance_from_board
dive_data['position_tightness'] = position_tightness
dive_data['feet_apart'] = feet_apart
dive_data['over_under_rotation'] = over_under_rotation
dive_data['above_boards'] = above_boards
dive_data['on_boards'] = on_boards
dive_data['som_counts'] = som_counts
dive_data['twist_counts'] = twist_counts
dive_data['board_end_coords'] = board_end_coords
dive_data['is_handstand'] = handstand
dive_data['direction'] = expected_direction
return dive_data
|