File size: 10,279 Bytes
2114261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from microprograms.temporal_segmentation.entry import entry_microprogram_one_frame
from microprograms.temporal_segmentation.somersault import somersault_microprogram_one_frame
from microprograms.temporal_segmentation.twist import twist_microprogram_one_frame
from microprograms.temporal_segmentation.start_takeoff import takeoff_microprogram_one_frame
from microprograms.errors.distance_from_springboard_micro_program import board_end
from microprograms.errors.splash_micro_program import get_splash_from_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_springboard_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_platform_for_one_frame
from microprograms.errors.angles_micro_programs import applyFeetApartError
from microprograms.errors.angles_micro_programs import applyPositionTightnessError
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
from models.detectron2.diver_detector_setup import get_diver_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
from models.detectron2.splash_detector_setup import get_splash_detector
from somersault_counter import som_counter, twist_counter
from microprograms.errors.over_rotation import over_rotation
from temporal_segmentation import detect_on_board
import pickle
import os
import math
import numpy as np
import cv2

def getDiveInfo_from_diveNum(diveNum):
    handstand = (diveNum[0] == '6')
    expected_som = int(diveNum[2])
    if len(diveNum) == 5:
        expected_twists = int(diveNum[3])
    else:
        expected_twists = 0
    if diveNum[0] == '1' or diveNum[0] == '3' or diveNum[:2] == '51' or diveNum[:2] == '53' or diveNum[:2] == '61' or diveNum[:2] == '63':
        back_facing = False
    else:
        back_facing = True
    if diveNum[0] == '1' or diveNum[:2] == '51' or diveNum[:2] == '61':
        expected_direction = 'front'
    elif diveNum[0] == '2' or diveNum[:2] == '52' or diveNum[:2] == '62':
        expected_direction = 'back'
    elif diveNum[0] == '3' or diveNum[:2] == '53' or diveNum[:2] == '63':
        expected_direction = 'reverse'
    elif diveNum[0] == '4':
        expected_direction = 'inward'
    if diveNum[-1] == 'b':
        position = 'pike'
    elif diveNum[-1] == 'c':
        position = 'tuck'
    else:
        position = 'free'
    return handstand, expected_som, expected_twists, back_facing, expected_direction, position

def getAllErrorsAndSegmentation(first_folder, second_folder, diveNum, board_side=None, platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
    handstand, expected_som, expected_twists, back_facing, expected_direction, position = getDiveInfo_from_diveNum(diveNum)
    # first_folder = input("what is the first folder? Ex: 01, FINAWorldChampionships2019_Women10m_final_r1, etc. ")
    # second_folder = input("what is the second folder? (dive within the first folder)")
    dive_data = {}
    takeoff = []
    twist = []
    som = []
    entry = []
    distance_from_board = []
    position_tightness = []
    feet_apart = []
    over_under_rotation = []
    splash = []
    pose_preds = []
    diver_boxes = []
    above_boards = []
    on_boards = []
    som_counts = []
    twist_counts = []
    board_end_coords = []
    plat_outputs = []
    splash_pred_masks = []
    above_board = True
    on_board = True
    if platform_detector is None:
        platform_detector = get_platform_detector()
    if splash_detector is None:
        splash_detector = get_splash_detector()
    if diver_detector is None:
        diver_detector = get_diver_detector()
    if pose_model is None:
        pose_model = get_pose_model()
    key = (first_folder, int(second_folder))
    dive_folder_num = "{}_{}".format(first_folder, second_folder)
    directory = './FineDiving/datasets/FINADiving_MTL_256s/{}/{}/'.format(first_folder, second_folder)
    file_names = os.listdir(directory)
    # with open('./output/joint_plots/{}/pose_preds.pkl'.format(dive_folder_num), 'rb') as pickle_file:
    #     pose_preds = pickle.load(pickle_file)
    j = 0
    prev_pred = None
    som_prev_pred = None
    half_som_count=0
    petal_count = 0
    in_petal = False
    for i in range(len(file_names)):
        # pose_pred = None
        filepath = directory + file_names[i]
        # print("filepath:", filepath)
        if file_names[i][-4:] != ".jpg":
            continue
        diver_box, pose_pred = get_pose_estimation(filepath, diver_detector=diver_detector, pose_model=pose_model)
        # pose_pred = data[key]['pose_pred'][i]
        diver_boxes.append(diver_box)
        pose_preds.append(pose_pred)
        # if j < len(pose_preds):
        #     print("filepath has pose_pred:", filepath)
        #     pose_pred = pose_preds[j]
        #     j += 1
        calculated_half_som_count, skip = som_counter(pose_pred, prev_pose_pred=som_prev_pred, half_som_count=half_som_count, handstand=handstand)
        if not skip:
            som_prev_pred = pose_pred
        calculated_petal_count, calculated_in_petal = twist_counter(pose_pred, prev_pose_pred=prev_pred, in_petal=in_petal, petal_count=petal_count)
        im = cv2.imread(filepath)
        plat_output = platform_detector(im)
        plat_outputs.append(plat_output)
        board_end_coord = board_end(plat_output, board_side=board_side)
        board_end_coords.append(board_end_coord)
        # if board_end_coord is None:
        #     print("NO BOARD NONE CRYING")
        if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
            above_board=False
        if on_board and detect_on_board(board_end_coord, board_side, pose_pred, handstand) is not None and not detect_on_board(board_end_coord, board_side, pose_pred, handstand):
            on_board = False
        if above_board:
            above_boards.append(1)
        else:
            above_boards.append(0)
        if on_board:
            on_boards.append(1)
        else:
            on_boards.append(0)
        calculated_takeoff = takeoff_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred)
        calculated_twist = twist_microprogram_one_frame(filepath, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, diver_detector=diver_detector, pose_model=pose_model)
        calculated_som = somersault_microprogram_one_frame(filepath, pose_pred=pose_pred, on_board=on_board, expected_som=expected_som, half_som_count=half_som_count, expected_twists=expected_twists, petal_count=petal_count, diver_detector=diver_detector, pose_model=pose_model)
        calculated_entry = entry_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, splash_detector=splash_detector, visualize=False, dive_folder_num=dive_folder_num)
        if calculated_som == 1:
            half_som_count = calculated_half_som_count
        elif calculated_twist == 1:
            half_som_count = calculated_half_som_count
            petal_count = calculated_petal_count
            in_petal = calculated_in_petal
        # distance from board
        dist = calculate_distance_from_platform_for_one_frame(filepath, visualize=False, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
        distance_from_board.append(dist)
        position_tightness.append(applyPositionTightnessError(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
        feet_apart.append(applyFeetApartError(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
        over_under_rotation.append(over_rotation(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
        splash_area, splash_pred_mask = get_splash_from_one_frame(filepath, predictor=splash_detector, visualize=False)
        splash.append(splash_area)
        splash_pred_masks.append(splash_pred_mask)    
        takeoff.append(calculated_takeoff)
        twist.append(calculated_twist)
        som.append(calculated_som)
        entry.append(calculated_entry)
        som_counts.append(half_som_count)
        twist_counts.append(petal_count)
        prev_pred = pose_pred

    dive_data['pose_pred'] = pose_preds
    dive_data['takeoff'] = takeoff
    dive_data['twist'] = twist
    dive_data['som'] = som
    dive_data['entry'] = entry
    dive_data['distance_from_board'] = distance_from_board
    dive_data['position_tightness'] = position_tightness
    dive_data['feet_apart'] = feet_apart
    dive_data['over_under_rotation'] = over_under_rotation
    dive_data['splash'] = splash
    dive_data['above_boards'] = above_boards
    dive_data['on_boards'] = on_boards
    dive_data['som_counts'] = som_counts
    dive_data['twist_counts'] = twist_counts
    dive_data['board_end_coords'] = board_end_coords
    dive_data['diver_boxes'] = diver_boxes
    dive_data['splash_pred_masks'] = splash_pred_masks
    dive_data['plat_outputs'] = plat_outputs
    dive_data['board_side'] = board_side
    dive_data['is_handstand'] = handstand
    dive_data['direction'] = expected_direction

    print("takeoff", takeoff)
    print("twist", twist)
    print("som", som)
    print("entry", entry)
    print("distance_from_board", distance_from_board)
    print("position_tightness", position_tightness)
    print("feet_apart", feet_apart)
    print("over_under_rotation", over_under_rotation)
    print("splash", splash)
    print("above_boards", above_boards)
    print("on_boards", on_boards)
    print("som_counts", som_counts)
    print("twist_counts", twist_counts)
    print("board_end_coords", board_end_coords)
    print("diver_boxes", diver_boxes)
    return dive_data