Spaces:
Running
on
Zero
Running
on
Zero
# modified from https://github.com/Profactor/continuous-remeshing | |
import time | |
import torch | |
import torch_scatter | |
from typing import Tuple | |
from mesh_reconstruction.remesh import calc_edge_length, calc_edges, calc_face_collapses, calc_face_normals, calc_vertex_normals, collapse_edges, flip_edges, pack, prepend_dummies, remove_dummies, split_edges | |
def remesh( | |
vertices_etc:torch.Tensor, #V,D | |
faces:torch.Tensor, #F,3 long | |
min_edgelen:torch.Tensor, #V | |
max_edgelen:torch.Tensor, #V | |
flip:bool, | |
max_vertices=1e6 | |
): | |
# dummies | |
vertices_etc,faces = prepend_dummies(vertices_etc,faces) | |
vertices = vertices_etc[:,:3] #V,3 | |
nan_tensor = torch.tensor([torch.nan],device=min_edgelen.device) | |
min_edgelen = torch.concat((nan_tensor,min_edgelen)) | |
max_edgelen = torch.concat((nan_tensor,max_edgelen)) | |
# collapse | |
edges,face_to_edge = calc_edges(faces) #E,2 F,3 | |
edge_length = calc_edge_length(vertices,edges) #E | |
face_normals = calc_face_normals(vertices,faces,normalize=False) #F,3 | |
vertex_normals = calc_vertex_normals(vertices,faces,face_normals) #V,3 | |
face_collapse = calc_face_collapses(vertices,faces,edges,face_to_edge,edge_length,face_normals,vertex_normals,min_edgelen,area_ratio=0.5) | |
shortness = (1 - edge_length / min_edgelen[edges].mean(dim=-1)).clamp_min_(0) #e[0,1] 0...ok, 1...edgelen=0 | |
priority = face_collapse.float() + shortness | |
vertices_etc,faces = collapse_edges(vertices_etc,faces,edges,priority) | |
# split | |
if vertices.shape[0]<max_vertices: | |
edges,face_to_edge = calc_edges(faces) #E,2 F,3 | |
vertices = vertices_etc[:,:3] #V,3 | |
edge_length = calc_edge_length(vertices,edges) #E | |
splits = edge_length > max_edgelen[edges].mean(dim=-1) | |
vertices_etc,faces = split_edges(vertices_etc,faces,edges,face_to_edge,splits,pack_faces=False) | |
vertices_etc,faces = pack(vertices_etc,faces) | |
vertices = vertices_etc[:,:3] | |
if flip: | |
edges,_,edge_to_face = calc_edges(faces,with_edge_to_face=True) #E,2 F,3 | |
flip_edges(vertices,faces,edges,edge_to_face,with_border=False) | |
return remove_dummies(vertices_etc,faces) | |
def lerp_unbiased(a:torch.Tensor,b:torch.Tensor,weight:float,step:int): | |
"""lerp with adam's bias correction""" | |
c_prev = 1-weight**(step-1) | |
c = 1-weight**step | |
a_weight = weight*c_prev/c | |
b_weight = (1-weight)/c | |
a.mul_(a_weight).add_(b, alpha=b_weight) | |
class MeshOptimizer: | |
"""Use this like a pytorch Optimizer, but after calling opt.step(), do vertices,faces = opt.remesh().""" | |
def __init__(self, | |
vertices:torch.Tensor, #V,3 | |
faces:torch.Tensor, #F,3 | |
lr=0.3, #learning rate | |
betas=(0.8,0.8,0), #betas[0:2] are the same as in Adam, betas[2] may be used to time-smooth the relative velocity nu | |
gammas=(0,0,0), #optional spatial smoothing for m1,m2,nu, values between 0 (no smoothing) and 1 (max. smoothing) | |
nu_ref=0.3, #reference velocity for edge length controller | |
edge_len_lims=(.01,.15), #smallest and largest allowed reference edge length | |
edge_len_tol=.5, #edge length tolerance for split and collapse | |
gain=.2, #gain value for edge length controller | |
laplacian_weight=.02, #for laplacian smoothing/regularization | |
ramp=1, #learning rate ramp, actual ramp width is ramp/(1-betas[0]) | |
grad_lim=10., #gradients are clipped to m1.abs()*grad_lim | |
remesh_interval=1, #larger intervals are faster but with worse mesh quality | |
local_edgelen=True, #set to False to use a global scalar reference edge length instead | |
): | |
self._vertices = vertices | |
self._faces = faces | |
self._lr = lr | |
self._betas = betas | |
self._gammas = gammas | |
self._nu_ref = nu_ref | |
self._edge_len_lims = edge_len_lims | |
self._edge_len_tol = edge_len_tol | |
self._gain = gain | |
self._laplacian_weight = laplacian_weight | |
self._ramp = ramp | |
self._grad_lim = grad_lim | |
self._remesh_interval = remesh_interval | |
self._local_edgelen = local_edgelen | |
self._step = 0 | |
V = self._vertices.shape[0] | |
# prepare continuous tensor for all vertex-based data | |
self._vertices_etc = torch.zeros([V,9],device=vertices.device) | |
self._split_vertices_etc() | |
self.vertices.copy_(vertices) #initialize vertices | |
self._vertices.requires_grad_() | |
self._ref_len.fill_(edge_len_lims[1]) | |
def vertices(self): | |
return self._vertices | |
def faces(self): | |
return self._faces | |
def _split_vertices_etc(self): | |
self._vertices = self._vertices_etc[:,:3] | |
self._m2 = self._vertices_etc[:,3] | |
self._nu = self._vertices_etc[:,4] | |
self._m1 = self._vertices_etc[:,5:8] | |
self._ref_len = self._vertices_etc[:,8] | |
with_gammas = any(g!=0 for g in self._gammas) | |
self._smooth = self._vertices_etc[:,:8] if with_gammas else self._vertices_etc[:,:3] | |
def zero_grad(self): | |
self._vertices.grad = None | |
def step(self): | |
eps = 1e-8 | |
self._step += 1 | |
# spatial smoothing | |
edges,_ = calc_edges(self._faces) #E,2 | |
E = edges.shape[0] | |
edge_smooth = self._smooth[edges] #E,2,S | |
neighbor_smooth = torch.zeros_like(self._smooth) #V,S | |
torch_scatter.scatter_mean(src=edge_smooth.flip(dims=[1]).reshape(E*2,-1),index=edges.reshape(E*2,1),dim=0,out=neighbor_smooth) | |
#apply optional smoothing of m1,m2,nu | |
if self._gammas[0]: | |
self._m1.lerp_(neighbor_smooth[:,5:8],self._gammas[0]) | |
if self._gammas[1]: | |
self._m2.lerp_(neighbor_smooth[:,3],self._gammas[1]) | |
if self._gammas[2]: | |
self._nu.lerp_(neighbor_smooth[:,4],self._gammas[2]) | |
#add laplace smoothing to gradients | |
laplace = self._vertices - neighbor_smooth[:,:3] | |
grad = torch.addcmul(self._vertices.grad, laplace, self._nu[:,None], value=self._laplacian_weight) | |
#gradient clipping | |
if self._step>1: | |
grad_lim = self._m1.abs().mul_(self._grad_lim) | |
grad.clamp_(min=-grad_lim,max=grad_lim) | |
# moment updates | |
lerp_unbiased(self._m1, grad, self._betas[0], self._step) | |
lerp_unbiased(self._m2, (grad**2).sum(dim=-1), self._betas[1], self._step) | |
velocity = self._m1 / self._m2[:,None].sqrt().add_(eps) #V,3 | |
speed = velocity.norm(dim=-1) #V | |
if self._betas[2]: | |
lerp_unbiased(self._nu,speed,self._betas[2],self._step) #V | |
else: | |
self._nu.copy_(speed) #V | |
# update vertices | |
ramped_lr = self._lr * min(1,self._step * (1-self._betas[0]) / self._ramp) | |
self._vertices.add_(velocity * self._ref_len[:,None], alpha=-ramped_lr) | |
# update target edge length | |
if self._step % self._remesh_interval == 0: | |
if self._local_edgelen: | |
len_change = (1 + (self._nu - self._nu_ref) * self._gain) | |
else: | |
len_change = (1 + (self._nu.mean() - self._nu_ref) * self._gain) | |
self._ref_len *= len_change | |
self._ref_len.clamp_(*self._edge_len_lims) | |
def remesh(self, flip:bool=True, poisson=False)->Tuple[torch.Tensor,torch.Tensor]: | |
min_edge_len = self._ref_len * (1 - self._edge_len_tol) | |
max_edge_len = self._ref_len * (1 + self._edge_len_tol) | |
self._vertices_etc,self._faces = remesh(self._vertices_etc,self._faces,min_edge_len,max_edge_len,flip, max_vertices=1e6) | |
self._split_vertices_etc() | |
self._vertices.requires_grad_() | |
return self._vertices, self._faces | |