Wuvin's picture
init
37aeb5b
# modified from https://github.com/Profactor/continuous-remeshing
import time
import torch
import torch_scatter
from typing import Tuple
from mesh_reconstruction.remesh import calc_edge_length, calc_edges, calc_face_collapses, calc_face_normals, calc_vertex_normals, collapse_edges, flip_edges, pack, prepend_dummies, remove_dummies, split_edges
@torch.no_grad()
def remesh(
vertices_etc:torch.Tensor, #V,D
faces:torch.Tensor, #F,3 long
min_edgelen:torch.Tensor, #V
max_edgelen:torch.Tensor, #V
flip:bool,
max_vertices=1e6
):
# dummies
vertices_etc,faces = prepend_dummies(vertices_etc,faces)
vertices = vertices_etc[:,:3] #V,3
nan_tensor = torch.tensor([torch.nan],device=min_edgelen.device)
min_edgelen = torch.concat((nan_tensor,min_edgelen))
max_edgelen = torch.concat((nan_tensor,max_edgelen))
# collapse
edges,face_to_edge = calc_edges(faces) #E,2 F,3
edge_length = calc_edge_length(vertices,edges) #E
face_normals = calc_face_normals(vertices,faces,normalize=False) #F,3
vertex_normals = calc_vertex_normals(vertices,faces,face_normals) #V,3
face_collapse = calc_face_collapses(vertices,faces,edges,face_to_edge,edge_length,face_normals,vertex_normals,min_edgelen,area_ratio=0.5)
shortness = (1 - edge_length / min_edgelen[edges].mean(dim=-1)).clamp_min_(0) #e[0,1] 0...ok, 1...edgelen=0
priority = face_collapse.float() + shortness
vertices_etc,faces = collapse_edges(vertices_etc,faces,edges,priority)
# split
if vertices.shape[0]<max_vertices:
edges,face_to_edge = calc_edges(faces) #E,2 F,3
vertices = vertices_etc[:,:3] #V,3
edge_length = calc_edge_length(vertices,edges) #E
splits = edge_length > max_edgelen[edges].mean(dim=-1)
vertices_etc,faces = split_edges(vertices_etc,faces,edges,face_to_edge,splits,pack_faces=False)
vertices_etc,faces = pack(vertices_etc,faces)
vertices = vertices_etc[:,:3]
if flip:
edges,_,edge_to_face = calc_edges(faces,with_edge_to_face=True) #E,2 F,3
flip_edges(vertices,faces,edges,edge_to_face,with_border=False)
return remove_dummies(vertices_etc,faces)
def lerp_unbiased(a:torch.Tensor,b:torch.Tensor,weight:float,step:int):
"""lerp with adam's bias correction"""
c_prev = 1-weight**(step-1)
c = 1-weight**step
a_weight = weight*c_prev/c
b_weight = (1-weight)/c
a.mul_(a_weight).add_(b, alpha=b_weight)
class MeshOptimizer:
"""Use this like a pytorch Optimizer, but after calling opt.step(), do vertices,faces = opt.remesh()."""
def __init__(self,
vertices:torch.Tensor, #V,3
faces:torch.Tensor, #F,3
lr=0.3, #learning rate
betas=(0.8,0.8,0), #betas[0:2] are the same as in Adam, betas[2] may be used to time-smooth the relative velocity nu
gammas=(0,0,0), #optional spatial smoothing for m1,m2,nu, values between 0 (no smoothing) and 1 (max. smoothing)
nu_ref=0.3, #reference velocity for edge length controller
edge_len_lims=(.01,.15), #smallest and largest allowed reference edge length
edge_len_tol=.5, #edge length tolerance for split and collapse
gain=.2, #gain value for edge length controller
laplacian_weight=.02, #for laplacian smoothing/regularization
ramp=1, #learning rate ramp, actual ramp width is ramp/(1-betas[0])
grad_lim=10., #gradients are clipped to m1.abs()*grad_lim
remesh_interval=1, #larger intervals are faster but with worse mesh quality
local_edgelen=True, #set to False to use a global scalar reference edge length instead
):
self._vertices = vertices
self._faces = faces
self._lr = lr
self._betas = betas
self._gammas = gammas
self._nu_ref = nu_ref
self._edge_len_lims = edge_len_lims
self._edge_len_tol = edge_len_tol
self._gain = gain
self._laplacian_weight = laplacian_weight
self._ramp = ramp
self._grad_lim = grad_lim
self._remesh_interval = remesh_interval
self._local_edgelen = local_edgelen
self._step = 0
V = self._vertices.shape[0]
# prepare continuous tensor for all vertex-based data
self._vertices_etc = torch.zeros([V,9],device=vertices.device)
self._split_vertices_etc()
self.vertices.copy_(vertices) #initialize vertices
self._vertices.requires_grad_()
self._ref_len.fill_(edge_len_lims[1])
@property
def vertices(self):
return self._vertices
@property
def faces(self):
return self._faces
def _split_vertices_etc(self):
self._vertices = self._vertices_etc[:,:3]
self._m2 = self._vertices_etc[:,3]
self._nu = self._vertices_etc[:,4]
self._m1 = self._vertices_etc[:,5:8]
self._ref_len = self._vertices_etc[:,8]
with_gammas = any(g!=0 for g in self._gammas)
self._smooth = self._vertices_etc[:,:8] if with_gammas else self._vertices_etc[:,:3]
def zero_grad(self):
self._vertices.grad = None
@torch.no_grad()
def step(self):
eps = 1e-8
self._step += 1
# spatial smoothing
edges,_ = calc_edges(self._faces) #E,2
E = edges.shape[0]
edge_smooth = self._smooth[edges] #E,2,S
neighbor_smooth = torch.zeros_like(self._smooth) #V,S
torch_scatter.scatter_mean(src=edge_smooth.flip(dims=[1]).reshape(E*2,-1),index=edges.reshape(E*2,1),dim=0,out=neighbor_smooth)
#apply optional smoothing of m1,m2,nu
if self._gammas[0]:
self._m1.lerp_(neighbor_smooth[:,5:8],self._gammas[0])
if self._gammas[1]:
self._m2.lerp_(neighbor_smooth[:,3],self._gammas[1])
if self._gammas[2]:
self._nu.lerp_(neighbor_smooth[:,4],self._gammas[2])
#add laplace smoothing to gradients
laplace = self._vertices - neighbor_smooth[:,:3]
grad = torch.addcmul(self._vertices.grad, laplace, self._nu[:,None], value=self._laplacian_weight)
#gradient clipping
if self._step>1:
grad_lim = self._m1.abs().mul_(self._grad_lim)
grad.clamp_(min=-grad_lim,max=grad_lim)
# moment updates
lerp_unbiased(self._m1, grad, self._betas[0], self._step)
lerp_unbiased(self._m2, (grad**2).sum(dim=-1), self._betas[1], self._step)
velocity = self._m1 / self._m2[:,None].sqrt().add_(eps) #V,3
speed = velocity.norm(dim=-1) #V
if self._betas[2]:
lerp_unbiased(self._nu,speed,self._betas[2],self._step) #V
else:
self._nu.copy_(speed) #V
# update vertices
ramped_lr = self._lr * min(1,self._step * (1-self._betas[0]) / self._ramp)
self._vertices.add_(velocity * self._ref_len[:,None], alpha=-ramped_lr)
# update target edge length
if self._step % self._remesh_interval == 0:
if self._local_edgelen:
len_change = (1 + (self._nu - self._nu_ref) * self._gain)
else:
len_change = (1 + (self._nu.mean() - self._nu_ref) * self._gain)
self._ref_len *= len_change
self._ref_len.clamp_(*self._edge_len_lims)
def remesh(self, flip:bool=True, poisson=False)->Tuple[torch.Tensor,torch.Tensor]:
min_edge_len = self._ref_len * (1 - self._edge_len_tol)
max_edge_len = self._ref_len * (1 + self._edge_len_tol)
self._vertices_etc,self._faces = remesh(self._vertices_etc,self._faces,min_edge_len,max_edge_len,flip, max_vertices=1e6)
self._split_vertices_etc()
self._vertices.requires_grad_()
return self._vertices, self._faces