Spaces:
Running
on
Zero
Running
on
Zero
import shlex | |
import subprocess | |
subprocess.run( | |
shlex.split( | |
"pip install package/onnxruntime_gpu-1.17.0-cp310-cp310-manylinux_2_28_x86_64.whl --force-reinstall --no-deps" | |
) | |
) | |
subprocess.run( | |
shlex.split( | |
"pip install package/nvdiffrast-0.3.1.torch-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps" | |
) | |
) | |
if __name__ == "__main__": | |
import os | |
from huggingface_hub import login | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
import os | |
import sys | |
sys.path.append(os.curdir) | |
import torch | |
torch.set_float32_matmul_precision('medium') | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.set_grad_enabled(False) | |
import fire | |
import gradio as gr | |
from gradio_app.gradio_3dgen import create_ui as create_3d_ui | |
from gradio_app.all_models import model_zoo | |
_TITLE = '''Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href='https://github.com/AiuniAI/Unique3D'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/AiuniAI/Unique3D?style=social"> | |
</a> | |
<img alt="GitHub License" src="https://img.shields.io/github/license/AiuniAI/Unique3D"> | |
</div> | |
# [Paper](https://arxiv.org/abs/2405.20343) | [Project page](https://wukailu.github.io/Unique3D/) | [Huggingface Demo](https://huggingface.co./spaces/Wuvin/Unique3D) | [Gradio Demo](http://unique3d.demo.avar.cn/) | [Online Demo](https://www.aiuni.ai/) | |
* High-fidelity and diverse textured meshes generated by Unique3D from single-view images. | |
* The demo is still under construction, and more features are expected to be implemented soon. | |
* If the Huggingface Demo is overcrowded or fails to produce stable results, you can use the Online Demo [aiuni.ai](https://www.aiuni.ai/), which is free to try (get the registration invitation code Join Discord: https://discord.gg/aiuni). However, the Online Demo is slightly different from the Gradio Demo, in that the inference speed is slower, but the generation is much more stable. | |
''' | |
def launch(): | |
model_zoo.init_models() | |
with gr.Blocks( | |
title=_TITLE, | |
# theme=gr.themes.Monochrome(), | |
) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
create_3d_ui("wkl") | |
demo.queue().launch(share=True) | |
if __name__ == '__main__': | |
fire.Fire(launch) | |