Spaces:
Running
Running
new app
Browse files
app.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import numpy as np
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import List, Dict, Optional
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
NEURONPEDIA_API_URL = "https://www.neuronpedia.org/api"
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class FeatureResult:
|
18 |
+
"""Structure to hold feature analysis results"""
|
19 |
+
|
20 |
+
feature_id: int
|
21 |
+
layer: str
|
22 |
+
name: str
|
23 |
+
description: str
|
24 |
+
activation_score: float
|
25 |
+
max_activation: float
|
26 |
+
category: str
|
27 |
+
interpretation: str
|
28 |
+
|
29 |
+
|
30 |
+
class MarketingAnalyzer:
|
31 |
+
def __init__(self, api_key: str = None):
|
32 |
+
"""Initialize the analyzer with API credentials"""
|
33 |
+
self.api_key = api_key or os.getenv("NEURONPEDIA_API_KEY")
|
34 |
+
if not self.api_key:
|
35 |
+
raise ValueError("Neuronpedia API key is required")
|
36 |
+
|
37 |
+
self.headers = {"Content-Type": "application/json", "X-Api-Key": self.api_key}
|
38 |
+
|
39 |
+
def _search_features(
|
40 |
+
self, text: str, layer: str = "20-gemmascope-mlp-16k"
|
41 |
+
) -> List[Dict]:
|
42 |
+
"""Search for relevant features based on text content"""
|
43 |
+
url = f"{NEURONPEDIA_API_URL}/explanation/search"
|
44 |
+
|
45 |
+
payload = {"modelId": "gemma-2b", "layers": [layer], "query": text, "offset": 0}
|
46 |
+
|
47 |
+
try:
|
48 |
+
response = requests.post(url, headers=self.headers, json=payload)
|
49 |
+
response.raise_for_status()
|
50 |
+
return response.json().get("results", [])
|
51 |
+
except Exception as e:
|
52 |
+
logger.error(f"Error searching features: {str(e)}")
|
53 |
+
return []
|
54 |
+
|
55 |
+
def _get_activation_values(self, text: str, feature: Dict) -> Dict:
|
56 |
+
"""Get activation values for specific text and feature"""
|
57 |
+
url = f"{NEURONPEDIA_API_URL}/activation/new"
|
58 |
+
|
59 |
+
payload = {
|
60 |
+
"feature": {
|
61 |
+
"modelId": "gemma-2b",
|
62 |
+
"layer": feature["layer"],
|
63 |
+
"index": int(feature["index"]),
|
64 |
+
},
|
65 |
+
"customText": text,
|
66 |
+
}
|
67 |
+
|
68 |
+
try:
|
69 |
+
response = requests.post(url, headers=self.headers, json=payload)
|
70 |
+
response.raise_for_status()
|
71 |
+
return response.json()
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Error getting activations: {str(e)}")
|
74 |
+
return None
|
75 |
+
|
76 |
+
def _interpret_activation(self, activation: float) -> str:
|
77 |
+
"""Interpret activation level"""
|
78 |
+
if activation > 0.8:
|
79 |
+
return "Very strong match"
|
80 |
+
elif activation > 0.5:
|
81 |
+
return "Moderate match"
|
82 |
+
return "Limited match"
|
83 |
+
|
84 |
+
def analyze_content(self, text: str) -> Dict:
|
85 |
+
"""Analyze content using Neuronpedia APIs"""
|
86 |
+
results = {
|
87 |
+
"text": text,
|
88 |
+
"features": {},
|
89 |
+
"categories": defaultdict(list),
|
90 |
+
"recommendations": [],
|
91 |
+
}
|
92 |
+
|
93 |
+
try:
|
94 |
+
# Search for relevant features
|
95 |
+
features = self._search_features(text)
|
96 |
+
|
97 |
+
# Analyze top features
|
98 |
+
for feature in features[:5]: # Analyze top 5 features
|
99 |
+
feature_id = int(feature["index"])
|
100 |
+
|
101 |
+
# Get activation values
|
102 |
+
activation_data = self._get_activation_values(text, feature)
|
103 |
+
if not activation_data:
|
104 |
+
continue
|
105 |
+
|
106 |
+
# Get maximum activation
|
107 |
+
max_activation = activation_data.get("activations", {}).get(
|
108 |
+
"maxValue", 0
|
109 |
+
)
|
110 |
+
mean_activation = np.mean(
|
111 |
+
activation_data.get("activations", {}).get("values", [0])
|
112 |
+
)
|
113 |
+
|
114 |
+
# Create feature result
|
115 |
+
feature_result = FeatureResult(
|
116 |
+
feature_id=feature_id,
|
117 |
+
layer=feature["layer"],
|
118 |
+
name=feature.get("description", f"Feature {feature_id}"),
|
119 |
+
description=feature.get("description", ""),
|
120 |
+
activation_score=mean_activation,
|
121 |
+
max_activation=max_activation,
|
122 |
+
category=self._categorize_feature(feature),
|
123 |
+
interpretation=self._interpret_activation(max_activation),
|
124 |
+
)
|
125 |
+
|
126 |
+
results["features"][feature_id] = feature_result
|
127 |
+
results["categories"][feature_result.category].append(feature_result)
|
128 |
+
|
129 |
+
# Generate recommendations
|
130 |
+
if results["features"]:
|
131 |
+
max_activation = max(
|
132 |
+
f.max_activation for f in results["features"].values()
|
133 |
+
)
|
134 |
+
if max_activation > 0.8:
|
135 |
+
results["recommendations"].append(
|
136 |
+
"Content shows strong alignment with marketing-relevant features. Consider emphasizing these elements."
|
137 |
+
)
|
138 |
+
elif max_activation < 0.3:
|
139 |
+
results["recommendations"].append(
|
140 |
+
"Content could benefit from more distinctive marketing elements."
|
141 |
+
)
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
logger.error(f"Error analyzing content: {str(e)}")
|
145 |
+
results["error"] = str(e)
|
146 |
+
|
147 |
+
return results
|
148 |
+
|
149 |
+
def _categorize_feature(self, feature: Dict) -> str:
|
150 |
+
"""Categorize feature based on description and patterns"""
|
151 |
+
description = feature.get("description", "").lower()
|
152 |
+
|
153 |
+
categories = {
|
154 |
+
"marketing": ["brand", "product", "market", "customer"],
|
155 |
+
"technical": ["technical", "technology", "software"],
|
156 |
+
"emotional": ["emotion", "feeling", "sentiment"],
|
157 |
+
"seo": ["search", "keyword", "ranking"],
|
158 |
+
}
|
159 |
+
|
160 |
+
for category, keywords in categories.items():
|
161 |
+
if any(keyword in description for keyword in keywords):
|
162 |
+
return category
|
163 |
+
|
164 |
+
return "general"
|
165 |
+
|
166 |
+
|
167 |
+
def create_gradio_interface():
|
168 |
+
analyzer = MarketingAnalyzer()
|
169 |
+
|
170 |
+
def analyze(text):
|
171 |
+
results = analyzer.analyze_content(text)
|
172 |
+
|
173 |
+
output = "# Content Analysis Results\n\n"
|
174 |
+
|
175 |
+
# Category scores
|
176 |
+
output += "## Category Scores\n"
|
177 |
+
for category, features in results["categories"].items():
|
178 |
+
if features:
|
179 |
+
avg_score = np.mean([f.activation_score for f in features])
|
180 |
+
output += f"**{category.title()}**: {avg_score:.2f}\n"
|
181 |
+
|
182 |
+
# Feature details
|
183 |
+
output += "\n## Feature Details\n"
|
184 |
+
for feature_id, feature in results["features"].items():
|
185 |
+
output += f"\n### {feature.name}\n"
|
186 |
+
output += f"**Score**: {feature.activation_score:.2f}\n"
|
187 |
+
output += f"**Max Activation**: {feature.max_activation:.2f}\n"
|
188 |
+
output += f"**Interpretation**: {feature.interpretation}\n"
|
189 |
+
if feature.description:
|
190 |
+
output += f"**Description**: {feature.description}\n"
|
191 |
+
output += f"[View on Neuronpedia](https://neuronpedia.org/gemma-2b/{feature.layer}/{feature_id})\n"
|
192 |
+
|
193 |
+
# Recommendations
|
194 |
+
if results.get("recommendations"):
|
195 |
+
output += "\n## Recommendations\n"
|
196 |
+
for rec in results["recommendations"]:
|
197 |
+
output += f"- {rec}\n"
|
198 |
+
|
199 |
+
# Get dashboard URL for highest activating feature
|
200 |
+
if results["features"]:
|
201 |
+
feature_id = max(
|
202 |
+
results["features"].items(), key=lambda x: x[1].activation_score
|
203 |
+
)[0]
|
204 |
+
feature = results["features"][feature_id]
|
205 |
+
dashboard_url = f"https://neuronpedia.org/gemma-2b/{feature.layer}/{feature_id}?embed=true&embedexplanation=true&embedplots=true&embedtest=true&height=300"
|
206 |
+
else:
|
207 |
+
dashboard_url = ""
|
208 |
+
feature_id = None
|
209 |
+
|
210 |
+
return (
|
211 |
+
output,
|
212 |
+
dashboard_url,
|
213 |
+
f"Currently viewing Feature {feature_id}" if feature_id else "",
|
214 |
+
)
|
215 |
+
|
216 |
+
# Create Gradio interface
|
217 |
+
with gr.Blocks(theme=gr.themes.Default()) as interface:
|
218 |
+
gr.Markdown("# Marketing Content Analyzer")
|
219 |
+
gr.Markdown("Analyze your marketing content using neural features")
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
with gr.Column(scale=1):
|
223 |
+
input_text = gr.Textbox(
|
224 |
+
lines=5,
|
225 |
+
placeholder="Enter your marketing content here...",
|
226 |
+
label="Marketing Content",
|
227 |
+
)
|
228 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
229 |
+
gr.Examples(
|
230 |
+
examples=[
|
231 |
+
"Our AI-powered solution revolutionizes workflow efficiency",
|
232 |
+
"Experience seamless integration with our platform",
|
233 |
+
"Transform your business with cutting-edge technology",
|
234 |
+
],
|
235 |
+
inputs=input_text,
|
236 |
+
)
|
237 |
+
|
238 |
+
with gr.Column(scale=2):
|
239 |
+
output_text = gr.Markdown(label="Analysis Results")
|
240 |
+
with gr.Group():
|
241 |
+
gr.Markdown("## Feature Dashboard")
|
242 |
+
feature_id_text = gr.Text(show_label=False)
|
243 |
+
dashboard_frame = gr.HTML(label="Feature Dashboard")
|
244 |
+
|
245 |
+
analyze_btn.click(
|
246 |
+
fn=analyze,
|
247 |
+
inputs=input_text,
|
248 |
+
outputs=[output_text, dashboard_frame, feature_id_text],
|
249 |
+
)
|
250 |
+
|
251 |
+
return interface
|
252 |
+
|
253 |
+
|
254 |
+
if __name__ == "__main__":
|
255 |
+
iface = create_gradio_interface()
|
256 |
+
iface.launch()
|