Wauplin HF staff commited on
Commit
2fc8bbc
·
verified ·
1 Parent(s): 1b89115

First draft

Browse files
Files changed (2) hide show
  1. app.py +130 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ from pathlib import Path
4
+ from typing import Iterable, List
5
+
6
+ import gradio as gr
7
+ import kagglehub
8
+ from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
9
+ from huggingface_hub import HfApi
10
+
11
+ KAGGLE_JSON = os.environ.get("KAGGLE_JSON")
12
+ KAGGLE_JSON_PATH = Path("~/.kaggle/kaggle.json").expanduser().resolve()
13
+ if KAGGLE_JSON_PATH.exists():
14
+ print(f"Found existing kaggle.json file at {KAGGLE_JSON_PATH}")
15
+ elif KAGGLE_JSON is not None:
16
+ print(
17
+ "KAGGLE_JSON is set as secret. Will be able to be authenticated when downloading files from Kaggle."
18
+ )
19
+ KAGGLE_JSON_PATH.mkdir(parents=True, exist_ok=True)
20
+ KAGGLE_JSON_PATH.write_text(KAGGLE_JSON)
21
+ else:
22
+ print(
23
+ f"No kaggle.json file found at {KAGGLE_JSON_PATH}. You will not be able to download private/gated files from Kaggle."
24
+ )
25
+
26
+
27
+ MARKDOWN_DESCRIPTION = """
28
+ # Keggla-importer GUI
29
+
30
+ The fastest way to import a model from KaggleHub to the Hugging Face Hub 🔥
31
+
32
+ Specify a Kaggle handle and a Hugging Face Write Token to import a model from KaggleHub to the Hugging Face Hub.
33
+
34
+ To find the Kaggle handle from a web UI, click on the "download dropdown" and copy the handle from the code snippet.
35
+ Example: `"keras/gemma/keras/gemma_instruct_2b_en"`.
36
+ """
37
+
38
+ if KAGGLE_JSON_PATH.exists():
39
+ MARKDOWN_DESCRIPTION += """
40
+
41
+ **Note**: a `kaggle.json` file exists in the home directory. This means the Space will be able to download **SOME** private/gated files from Kaggle.
42
+ To access other models, please duplicate this Space to a private Space and set the `KAGGLE_JSON` environment variable with the content of the `kaggle.json`
43
+ you've downloaded from your Kaggle user account.
44
+
45
+ """
46
+
47
+
48
+ def import_model(kaggle_model: str, repo_name: str, token: str) -> Iterable[List[Log]]:
49
+ if not kaggle_model:
50
+ return "Kaggle model is required."
51
+ if not repo_name:
52
+ repo_name = kaggle_model.split("/")[-1]
53
+ if not token:
54
+ return "HF Write Token is required."
55
+ api = HfApi(token=token)
56
+
57
+ runner = LogsViewRunner()
58
+
59
+ yield runner.log(f"Creating HF repo {repo_name}")
60
+ repo_url = api.create_repo(repo_name, exist_ok=True)
61
+ yield runner.log(f"Created HF repo: {repo_url}")
62
+ repo_id = repo_url.repo_id
63
+
64
+ model_id = api.model_info(repo_id)
65
+ if len(model_id.siblings) > 1:
66
+ yield runner.log(
67
+ f"Model repo {repo_id} is not empty. Please delete it or set a different repo name.",
68
+ level="ERROR",
69
+ )
70
+ return
71
+
72
+ yield runner.log(f"Downloading model {kaggle_model} from Kaggle.")
73
+ yield from runner.run_python(kagglehub.model_download, handle=kaggle_model)
74
+ if runner.exit_code != 0:
75
+ yield runner.log("Failed to download model from Kaggle.", level="ERROR")
76
+ api.delete_repo(repo_id=repo_id)
77
+ return
78
+
79
+ cache_path = kagglehub.model_download(kaggle_model) # should be instant
80
+ yield runner.log(f"Model successfully downloaded from Kaggle to {cache_path}.")
81
+
82
+ yield runner.log(f"Uploading model to HF repo {repo_id}.")
83
+ yield from runner.run_python(
84
+ api.upload_folder, repo_id=repo_id, folder_path=cache_path
85
+ )
86
+ if runner.exit_code != 0:
87
+ yield runner.log("Failed to upload model to HF repo.", level="ERROR")
88
+ api.delete_repo(repo_id=repo_id)
89
+ return
90
+
91
+ yield runner.log(f"Model successfully uploaded to HF: {repo_url}.")
92
+ yield runner.log(f"Deleting local cache from {cache_path}.")
93
+ shutil.rmtree(cache_path)
94
+
95
+ yield runner.log("Done!")
96
+
97
+
98
+ with gr.Blocks() as demo:
99
+ gr.Markdown(MARKDOWN_DESCRIPTION)
100
+
101
+ with gr.Row():
102
+ with gr.Column():
103
+ kaggle_model = gr.Textbox(
104
+ lines=1,
105
+ label="Kaggle Model*",
106
+ placeholder="keras/codegemma/keras/code_gemma_7b_en",
107
+ )
108
+ repo_name = gr.Textbox(
109
+ lines=1,
110
+ label="Repo name",
111
+ placeholder="Optional. Will infer from Kaggle Model if empty.",
112
+ )
113
+ with gr.Column():
114
+ token = gr.Textbox(
115
+ lines=1,
116
+ label="HF Write Token*",
117
+ info="https://hf.co/settings/token",
118
+ type="password",
119
+ placeholder="hf_***",
120
+ )
121
+
122
+ button = gr.Button("Import", variant="primary")
123
+ logs = LogsView(label="Terminal output")
124
+
125
+ button.click(
126
+ fn=import_model, inputs=[kaggle_model, repo_name, token], outputs=[logs]
127
+ )
128
+
129
+
130
+ demo.queue(default_concurrency_limit=1).launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ kaggle
2
+ huggingface_hub
3
+ # see https://huggingface.co/spaces/Wauplin/gradio_logsview
4
+ gradio_logsview@https://huggingface.co/spaces/Wauplin/gradio_logsview/resolve/main/gradio_logsview-0.0.5-py3-none-any.whl