from typing import Optional import torch from torch.nn.utils import remove_weight_norm from torch.nn.utils.parametrizations import weight_norm from rvc.lib.algorithm.modules import WaveNet from rvc.lib.algorithm.commons import get_padding, init_weights LRELU_SLOPE = 0.1 # Helper functions def create_conv1d_layer(channels, kernel_size, dilation): return weight_norm( torch.nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation, padding=get_padding(kernel_size, dilation), ) ) def apply_mask(tensor, mask): return tensor * mask if mask is not None else tensor class ResBlockBase(torch.nn.Module): def __init__(self, channels, kernel_size, dilations): super(ResBlockBase, self).__init__() self.convs1 = torch.nn.ModuleList( [create_conv1d_layer(channels, kernel_size, d) for d in dilations] ) self.convs1.apply(init_weights) self.convs2 = torch.nn.ModuleList( [create_conv1d_layer(channels, kernel_size, 1) for _ in dilations] ) self.convs2.apply(init_weights) def forward(self, x, x_mask=None): for c1, c2 in zip(self.convs1, self.convs2): xt = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) xt = apply_mask(xt, x_mask) xt = torch.nn.functional.leaky_relu(c1(xt), LRELU_SLOPE) xt = apply_mask(xt, x_mask) xt = c2(xt) x = xt + x return apply_mask(x, x_mask) def remove_weight_norm(self): for conv in self.convs1 + self.convs2: remove_weight_norm(conv) class ResBlock1(ResBlockBase): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__(channels, kernel_size, dilation) class ResBlock2(ResBlockBase): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__(channels, kernel_size, dilation) class Log(torch.nn.Module): """Logarithm module for flow-based models. This module computes the logarithm of the input and its log determinant. During reverse, it computes the exponential of the input. """ def forward(self, x, x_mask, reverse=False, **kwargs): """Forward pass. Args: x (torch.Tensor): Input tensor. x_mask (torch.Tensor): Mask tensor. reverse (bool, optional): Whether to reverse the operation. Defaults to False. """ if not reverse: y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x class Flip(torch.nn.Module): """Flip module for flow-based models. This module flips the input along the time dimension. """ def forward(self, x, *args, reverse=False, **kwargs): """Forward pass. Args: x (torch.Tensor): Input tensor. reverse (bool, optional): Whether to reverse the operation. Defaults to False. """ x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x class ElementwiseAffine(torch.nn.Module): """Elementwise affine transformation module for flow-based models. This module performs an elementwise affine transformation on the input. Args: channels (int): Number of channels. """ def __init__(self, channels): super().__init__() self.channels = channels self.m = torch.nn.Parameter(torch.zeros(channels, 1)) self.logs = torch.nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): """Forward pass. Args: x (torch.Tensor): Input tensor. x_mask (torch.Tensor): Mask tensor. reverse (bool, optional): Whether to reverse the operation. Defaults to False. """ if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x class ResidualCouplingBlock(torch.nn.Module): """Residual Coupling Block for normalizing flow. Args: channels (int): Number of channels in the input. hidden_channels (int): Number of hidden channels in the coupling layer. kernel_size (int): Kernel size of the convolutional layers. dilation_rate (int): Dilation rate of the convolutional layers. n_layers (int): Number of layers in the coupling layer. n_flows (int, optional): Number of coupling layers in the block. Defaults to 4. gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. """ def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0, ): super(ResidualCouplingBlock, self).__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.flows = torch.nn.ModuleList() for i in range(n_flows): self.flows.append( ResidualCouplingLayer( channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True, ) ) self.flows.append(Flip()) def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ): if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x = flow.forward(x, x_mask, g=g, reverse=reverse) return x def remove_weight_norm(self): """Removes weight normalization from the coupling layers.""" for i in range(self.n_flows): self.flows[i * 2].remove_weight_norm() def __prepare_scriptable__(self): """Prepares the module for scripting.""" for i in range(self.n_flows): for hook in self.flows[i * 2]._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.flows[i * 2]) return self class ResidualCouplingLayer(torch.nn.Module): """Residual coupling layer for flow-based models. Args: channels (int): Number of channels. hidden_channels (int): Number of hidden channels. kernel_size (int): Size of the convolutional kernel. dilation_rate (int): Dilation rate of the convolution. n_layers (int): Number of convolutional layers. p_dropout (float, optional): Dropout probability. Defaults to 0. gin_channels (int, optional): Number of conditioning channels. Defaults to 0. mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False. """ def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WaveNet( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels, ) self.post = torch.nn.Conv1d( hidden_channels, self.half_channels * (2 - mean_only), 1 ) self.post.weight.data.zero_() self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): """Forward pass. Args: x (torch.Tensor): Input tensor of shape (batch_size, channels, time_steps). x_mask (torch.Tensor): Mask tensor of shape (batch_size, 1, time_steps). g (torch.Tensor, optional): Conditioning tensor of shape (batch_size, gin_channels, time_steps). Defaults to None. reverse (bool, optional): Whether to reverse the operation. Defaults to False. """ x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet else: x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x def remove_weight_norm(self): """Remove weight normalization from the module.""" self.enc.remove_weight_norm()