import torch import json import os version_config_paths = [ os.path.join("v1", "32000.json"), os.path.join("v1", "40000.json"), os.path.join("v1", "48000.json"), os.path.join("v2", "48000.json"), os.path.join("v2", "40000.json"), os.path.join("v2", "32000.json"), ] def singleton(cls): instances = {} def get_instance(*args, **kwargs): if cls not in instances: instances[cls] = cls(*args, **kwargs) return instances[cls] return get_instance @singleton class Config: def __init__(self): self.device = "cuda:0" if torch.cuda.is_available() else "cpu" self.is_half = self.device != "cpu" self.gpu_name = ( torch.cuda.get_device_name(int(self.device.split(":")[-1])) if self.device.startswith("cuda") else None ) self.json_config = self.load_config_json() self.gpu_mem = None self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() def load_config_json(self) -> dict: configs = {} for config_file in version_config_paths: config_path = os.path.join("rvc", "configs", config_file) with open(config_path, "r") as f: configs[config_file] = json.load(f) return configs def has_mps(self) -> bool: # Check if Metal Performance Shaders are available - for macOS 12.3+. return torch.backends.mps.is_available() def has_xpu(self) -> bool: # Check if XPU is available. return hasattr(torch, "xpu") and torch.xpu.is_available() def set_precision(self, precision): if precision not in ["fp32", "fp16"]: raise ValueError("Invalid precision type. Must be 'fp32' or 'fp16'.") fp16_run_value = precision == "fp16" preprocess_target_version = "3.7" if precision == "fp16" else "3.0" preprocess_path = os.path.join( os.path.dirname(__file__), os.pardir, "rvc", "train", "preprocess", "preprocess.py", ) for config_path in version_config_paths: full_config_path = os.path.join("rvc", "configs", config_path) try: with open(full_config_path, "r") as f: config = json.load(f) config["train"]["fp16_run"] = fp16_run_value with open(full_config_path, "w") as f: json.dump(config, f, indent=4) except FileNotFoundError: print(f"File not found: {full_config_path}") if os.path.exists(preprocess_path): with open(preprocess_path, "r") as f: preprocess_content = f.read() preprocess_content = preprocess_content.replace( "3.0" if precision == "fp16" else "3.7", preprocess_target_version ) with open(preprocess_path, "w") as f: f.write(preprocess_content) return f"Overwritten preprocess and config.json to use {precision}." def get_precision(self): if not version_config_paths: raise FileNotFoundError("No configuration paths provided.") full_config_path = os.path.join("rvc", "configs", version_config_paths[0]) try: with open(full_config_path, "r") as f: config = json.load(f) fp16_run_value = config["train"].get("fp16_run", False) precision = "fp16" if fp16_run_value else "fp32" return precision except FileNotFoundError: print(f"File not found: {full_config_path}") return None def device_config(self) -> tuple: if self.device.startswith("cuda"): self.set_cuda_config() elif self.has_mps(): self.device = "mps" self.is_half = False self.set_precision("fp32") else: self.device = "cpu" self.is_half = False self.set_precision("fp32") # Configuration for 6GB GPU memory x_pad, x_query, x_center, x_max = ( (3, 10, 60, 65) if self.is_half else (1, 6, 38, 41) ) if self.gpu_mem is not None and self.gpu_mem <= 4: # Configuration for 5GB GPU memory x_pad, x_query, x_center, x_max = (1, 5, 30, 32) return x_pad, x_query, x_center, x_max def set_cuda_config(self): i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) low_end_gpus = ["16", "P40", "P10", "1060", "1070", "1080"] if ( any(gpu in self.gpu_name for gpu in low_end_gpus) and "V100" not in self.gpu_name.upper() ): self.is_half = False self.set_precision("fp32") self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // ( 1024**3 ) def max_vram_gpu(gpu): if torch.cuda.is_available(): gpu_properties = torch.cuda.get_device_properties(gpu) total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) return total_memory_gb else: return "0" def get_gpu_info(): ngpu = torch.cuda.device_count() gpu_infos = [] if torch.cuda.is_available() or ngpu != 0: for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) mem = int( torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4 ) gpu_infos.append("%s: %s %s GB" % (i, gpu_name, mem)) if len(gpu_infos) > 0: gpu_info = "\n".join(gpu_infos) else: gpu_info = "Unfortunately, there is no compatible GPU available to support your training." return gpu_info