import torch from rvc.lib.algorithm.commons import ( fused_add_tanh_sigmoid_multiply_no_jit, fused_add_tanh_sigmoid_multiply, ) class WaveNet(torch.nn.Module): """WaveNet residual blocks as used in WaveGlow Args: hidden_channels (int): Number of hidden channels. kernel_size (int): Size of the convolutional kernel. dilation_rate (int): Dilation rate of the convolution. n_layers (int): Number of convolutional layers. gin_channels (int, optional): Number of conditioning channels. Defaults to 0. p_dropout (float, optional): Dropout probability. Defaults to 0. """ def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WaveNet, self).__init__() assert kernel_size % 2 == 1 self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = torch.nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = torch.nn.Conv1d( gin_channels, 2 * hidden_channels * n_layers, 1 ) self.cond_layer = torch.nn.utils.parametrizations.weight_norm( cond_layer, name="weight" ) dilations = [dilation_rate**i for i in range(n_layers)] paddings = [(kernel_size * d - d) // 2 for d in dilations] for i in range(n_layers): in_layer = torch.nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilations[i], padding=paddings[i], ) in_layer = torch.nn.utils.parametrizations.weight_norm( in_layer, name="weight" ) self.in_layers.append(in_layer) res_skip_channels = ( hidden_channels if i == n_layers - 1 else 2 * hidden_channels ) res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.parametrizations.weight_norm( res_skip_layer, name="weight" ) self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): """Forward pass. Args: x (torch.Tensor): Input tensor of shape (batch_size, hidden_channels, time_steps). x_mask (torch.Tensor): Mask tensor of shape (batch_size, 1, time_steps). g (torch.Tensor, optional): Conditioning tensor of shape (batch_size, gin_channels, time_steps). Defaults to None. """ output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) # Zluda is_zluda = x.device.type == "cuda" and torch.cuda.get_device_name().endswith( "[ZLUDA]" ) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) # Preventing HIP crash by not using jit-decorated function if is_zluda: acts = fused_add_tanh_sigmoid_multiply_no_jit( x_in, g_l, n_channels_tensor ) else: acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): """Remove weight normalization from the module.""" if self.gin_channels != 0: torch.nn.utils.remove_weight_norm(self.cond_layer) for l in self.in_layers: torch.nn.utils.remove_weight_norm(l) for l in self.res_skip_layers: torch.nn.utils.remove_weight_norm(l)