import math import torch from typing import List, Optional def init_weights(m, mean=0.0, std=0.01): """ Initialize the weights of a module. Args: m: The module to initialize. mean: The mean of the normal distribution. std: The standard deviation of the normal distribution. """ classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): """ Calculate the padding needed for a convolution. Args: kernel_size: The size of the kernel. dilation: The dilation of the convolution. """ return int((kernel_size * dilation - dilation) / 2) def convert_pad_shape(pad_shape): """ Convert the pad shape to a list of integers. Args: pad_shape: The pad shape.. """ l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def kl_divergence(m_p, logs_p, m_q, logs_q): """ Calculate the KL divergence between two distributions. Args: m_p: The mean of the first distribution. logs_p: The log of the standard deviation of the first distribution. m_q: The mean of the second distribution. logs_q: The log of the standard deviation of the second distribution. """ kl = (logs_q - logs_p) - 0.5 kl += ( 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) ) return kl def slice_segments(x, ids_str, segment_size=4): """ Slice segments from a tensor. Args: x: The tensor to slice. ids_str: The starting indices of the segments. segment_size: The size of each segment. """ ret = torch.zeros_like(x[:, :, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, :, idx_str:idx_end] return ret def slice_segments2(x, ids_str, segment_size=4): """ Slice segments from a tensor. Args: x: The tensor to slice. ids_str: The starting indices of the segments. segment_size: The size of each segment. """ ret = torch.zeros_like(x[:, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, idx_str:idx_end] return ret def rand_slice_segments(x, x_lengths=None, segment_size=4): """ Randomly slice segments from a tensor. Args: x: The tensor to slice. x_lengths: The lengths of the sequences. segment_size: The size of each segment. """ b, d, t = x.size() if x_lengths is None: x_lengths = t ids_str_max = x_lengths - segment_size + 1 ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) ret = slice_segments(x, ids_str, segment_size) return ret, ids_str def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): """ Generate a 1D timing signal. Args: length: The length of the signal. channels: The number of channels of the signal. min_timescale: The minimum timescale. max_timescale: The maximum timescale. """ position = torch.arange(length, dtype=torch.float) num_timescales = channels // 2 log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( num_timescales - 1 ) inv_timescales = min_timescale * torch.exp( torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment ) scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) signal = torch.nn.functional.pad(signal, [0, 0, 0, channels % 2]) signal = signal.view(1, channels, length) return signal def subsequent_mask(length): """ Generate a subsequent mask. Args: length: The length of the sequence. """ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) return mask @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): """ Fused add tanh sigmoid multiply operation. Args: input_a: The first input tensor. input_b: The second input tensor. n_channels: The number of channels. """ n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def convert_pad_shape(pad_shape: List[List[int]]) -> List[int]: """ Convert the pad shape to a list of integers. Args: pad_shape: The pad shape. """ return torch.tensor(pad_shape).flip(0).reshape(-1).int().tolist() def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None): """ Generate a sequence mask. Args: length: The lengths of the sequences. max_length: The maximum length of the sequences. """ if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def clip_grad_value(parameters, clip_value, norm_type=2): """ Clip the gradients of a list of parameters. Args: parameters: The list of parameters to clip. clip_value: The maximum value of the gradients. norm_type: The type of norm to use for clipping. """ if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) if clip_value is not None: clip_value = float(clip_value) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type if clip_value is not None: p.grad.data.clamp_(min=-clip_value, max=clip_value) total_norm = total_norm ** (1.0 / norm_type) return total_norm