Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import torch | |
import numpy as np | |
from scipy.io.wavfile import read | |
from collections import OrderedDict | |
import matplotlib.pylab as plt | |
MATPLOTLIB_FLAG = False | |
def replace_keys_in_dict(d, old_key_part, new_key_part): | |
""" | |
Replaces keys in a dictionary recursively. | |
Args: | |
d (dict or OrderedDict): The dictionary to update. | |
old_key_part (str): The part of the key to replace. | |
new_key_part (str): The new part of the key. | |
""" | |
if isinstance(d, OrderedDict): | |
updated_dict = OrderedDict() | |
else: | |
updated_dict = {} | |
for key, value in d.items(): | |
if isinstance(key, str): | |
new_key = key.replace(old_key_part, new_key_part) | |
else: | |
new_key = key | |
if isinstance(value, dict): | |
value = replace_keys_in_dict(value, old_key_part, new_key_part) | |
updated_dict[new_key] = value | |
return updated_dict | |
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): | |
""" | |
Loads a checkpoint from a file. | |
Args: | |
checkpoint_path (str): Path to the checkpoint file. | |
model (torch.nn.Module): The model to load the checkpoint into. | |
optimizer (torch.optim.Optimizer, optional): The optimizer to load the state from. Defaults to None. | |
load_opt (int, optional): Whether to load the optimizer state. Defaults to 1. | |
""" | |
assert os.path.isfile(checkpoint_path) | |
checkpoint_old_dict = torch.load(checkpoint_path, map_location="cpu") | |
checkpoint_new_version_path = os.path.join( | |
os.path.dirname(checkpoint_path), | |
f"{os.path.splitext(os.path.basename(checkpoint_path))[0]}_new_version.pth", | |
) | |
torch.save( | |
replace_keys_in_dict( | |
replace_keys_in_dict( | |
checkpoint_old_dict, ".weight_v", ".parametrizations.weight.original1" | |
), | |
".weight_g", | |
".parametrizations.weight.original0", | |
), | |
checkpoint_new_version_path, | |
) | |
os.remove(checkpoint_path) | |
os.rename(checkpoint_new_version_path, checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
saved_state_dict = checkpoint_dict["model"] | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
try: | |
new_state_dict[k] = saved_state_dict[k] | |
if saved_state_dict[k].shape != state_dict[k].shape: | |
print( | |
"shape-%s-mismatch|need-%s|get-%s", | |
k, | |
state_dict[k].shape, | |
saved_state_dict[k].shape, | |
) | |
raise KeyError | |
except: | |
print("%s is not in the checkpoint", k) | |
new_state_dict[k] = v | |
if hasattr(model, "module"): | |
model.module.load_state_dict(new_state_dict, strict=False) | |
else: | |
model.load_state_dict(new_state_dict, strict=False) | |
iteration = checkpoint_dict["iteration"] | |
learning_rate = checkpoint_dict["learning_rate"] | |
if optimizer is not None and load_opt == 1: | |
optimizer.load_state_dict(checkpoint_dict["optimizer"]) | |
print(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})") | |
return model, optimizer, learning_rate, iteration | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
""" | |
Saves a checkpoint to a file. | |
Args: | |
model (torch.nn.Module): The model to save. | |
optimizer (torch.optim.Optimizer): The optimizer to save the state of. | |
learning_rate (float): The current learning rate. | |
iteration (int): The current iteration. | |
checkpoint_path (str): The path to save the checkpoint to. | |
""" | |
print(f"Saved model '{checkpoint_path}' (epoch {iteration})") | |
checkpoint_old_version_path = os.path.join( | |
os.path.dirname(checkpoint_path), | |
f"{os.path.splitext(os.path.basename(checkpoint_path))[0]}_old_version.pth", | |
) | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
torch.save( | |
{ | |
"model": state_dict, | |
"iteration": iteration, | |
"optimizer": optimizer.state_dict(), | |
"learning_rate": learning_rate, | |
}, | |
checkpoint_path, | |
) | |
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
torch.save( | |
replace_keys_in_dict( | |
replace_keys_in_dict( | |
checkpoint, ".parametrizations.weight.original1", ".weight_v" | |
), | |
".parametrizations.weight.original0", | |
".weight_g", | |
), | |
checkpoint_old_version_path, | |
) | |
os.remove(checkpoint_path) | |
os.rename(checkpoint_old_version_path, checkpoint_path) | |
def summarize( | |
writer, | |
global_step, | |
scalars={}, | |
histograms={}, | |
images={}, | |
audios={}, | |
audio_sample_rate=22050, | |
): | |
""" | |
Summarizes training statistics and logs them to a TensorBoard writer. | |
Args: | |
writer (SummaryWriter): The TensorBoard writer. | |
global_step (int): The current global step. | |
scalars (dict, optional): Dictionary of scalar values to log. Defaults to {}. | |
histograms (dict, optional): Dictionary of histogram values to log. Defaults to {}. | |
images (dict, optional): Dictionary of image values to log. Defaults to {}. | |
audios (dict, optional): Dictionary of audio values to log. Defaults to {}. | |
audio_sample_rate (int, optional): Sampling rate of the audio data. Defaults to 22050. | |
""" | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats="HWC") | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sample_rate) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
""" | |
Returns the path to the latest checkpoint file in a directory. | |
Args: | |
dir_path (str): The directory to search for checkpoints. | |
regex (str, optional): The regular expression to match checkpoint files. Defaults to "G_*.pth". | |
""" | |
f_list = glob.glob(os.path.join(dir_path, regex)) | |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
x = f_list[-1] | |
return x | |
def plot_spectrogram_to_numpy(spectrogram): | |
""" | |
Plots a spectrogram to a NumPy array. | |
Args: | |
spectrogram (numpy.ndarray): The spectrogram to plot. | |
""" | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def load_wav_to_torch(full_path): | |
""" | |
Loads a WAV file into a PyTorch tensor. | |
Args: | |
full_path (str): The path to the WAV file. | |
""" | |
sample_rate, data = read(full_path) | |
return torch.FloatTensor(data.astype(np.float32)), sample_rate | |
def load_filepaths_and_text(filename, split="|"): | |
""" | |
Loads filepaths and text from a file. | |
Args: | |
filename (str): The path to the file. | |
split (str, optional): The delimiter used to split the lines. Defaults to "|". | |
""" | |
with open(filename, encoding="utf-8") as f: | |
filepaths_and_text = [line.strip().split(split) for line in f] | |
return filepaths_and_text | |
class HParams: | |
""" | |
A class for storing and accessing hyperparameters. | |
Attributes: | |
**kwargs: Keyword arguments representing hyperparameters and their values. | |
""" | |
def __init__(self, **kwargs): | |
""" | |
Initializes an HParams object. | |
Args: | |
**kwargs: Keyword arguments representing hyperparameters and their values. | |
""" | |
for k, v in kwargs.items(): | |
if type(v) == dict: | |
v = HParams(**v) | |
self[k] = v | |
def keys(self): | |
""" | |
Returns a list of hyperparameter keys. | |
""" | |
return self.__dict__.keys() | |
def items(self): | |
""" | |
Returns a list of (key, value) pairs for each hyperparameter. | |
""" | |
return self.__dict__.items() | |
def values(self): | |
""" | |
Returns a list of hyperparameter values. | |
""" | |
return self.__dict__.values() | |
def __len__(self): | |
""" | |
Returns the number of hyperparameters. | |
""" | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
""" | |
Gets the value of a hyperparameter. | |
""" | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
""" | |
Sets the value of a hyperparameter. | |
""" | |
return setattr(self, key, value) | |
def __contains__(self, key): | |
""" | |
Checks if a hyperparameter key exists. | |
""" | |
return key in self.__dict__ | |
def __repr__(self): | |
""" | |
Returns a string representation of the HParams object. | |
""" | |
return self.__dict__.__repr__() | |