Spaces:
Runtime error
Runtime error
import torch | |
from torch.nn.utils.parametrizations import spectral_norm, weight_norm | |
from rvc.lib.algorithm.commons import get_padding | |
from rvc.lib.algorithm.residuals import LRELU_SLOPE | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
""" | |
Multi-period discriminator. | |
This class implements a multi-period discriminator, which is used to | |
discriminate between real and fake audio signals. The discriminator | |
is composed of a series of convolutional layers that are applied to | |
the input signal at different periods. | |
Args: | |
use_spectral_norm (bool): Whether to use spectral normalization. | |
Defaults to False. | |
""" | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminator, self).__init__() | |
periods = [2, 3, 5, 7, 11, 17] | |
self.discriminators = torch.nn.ModuleList( | |
[DiscriminatorS(use_spectral_norm=use_spectral_norm)] | |
+ [DiscriminatorP(p, use_spectral_norm=use_spectral_norm) for p in periods] | |
) | |
def forward(self, y, y_hat): | |
""" | |
Forward pass of the multi-period discriminator. | |
Args: | |
y (torch.Tensor): Real audio signal. | |
y_hat (torch.Tensor): Fake audio signal. | |
""" | |
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class MultiPeriodDiscriminatorV2(torch.nn.Module): | |
""" | |
Multi-period discriminator V2. | |
This class implements a multi-period discriminator V2, which is used | |
to discriminate between real and fake audio signals. The discriminator | |
is composed of a series of convolutional layers that are applied to | |
the input signal at different periods. | |
Args: | |
use_spectral_norm (bool): Whether to use spectral normalization. | |
Defaults to False. | |
""" | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminatorV2, self).__init__() | |
periods = [2, 3, 5, 7, 11, 17, 23, 37] | |
self.discriminators = torch.nn.ModuleList( | |
[DiscriminatorS(use_spectral_norm=use_spectral_norm)] | |
+ [DiscriminatorP(p, use_spectral_norm=use_spectral_norm) for p in periods] | |
) | |
def forward(self, y, y_hat): | |
""" | |
Forward pass of the multi-period discriminator V2. | |
Args: | |
y (torch.Tensor): Real audio signal. | |
y_hat (torch.Tensor): Fake audio signal. | |
""" | |
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
""" | |
Discriminator for the short-term component. | |
This class implements a discriminator for the short-term component | |
of the audio signal. The discriminator is composed of a series of | |
convolutional layers that are applied to the input signal. | |
""" | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
self.convs = torch.nn.ModuleList( | |
[ | |
norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), | |
norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2)), | |
] | |
) | |
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1)) | |
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) | |
def forward(self, x): | |
""" | |
Forward pass of the discriminator. | |
Args: | |
x (torch.Tensor): Input audio signal. | |
""" | |
fmap = [] | |
for conv in self.convs: | |
x = self.lrelu(conv(x)) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class DiscriminatorP(torch.nn.Module): | |
""" | |
Discriminator for the long-term component. | |
This class implements a discriminator for the long-term component | |
of the audio signal. The discriminator is composed of a series of | |
convolutional layers that are applied to the input signal at a given | |
period. | |
Args: | |
period (int): Period of the discriminator. | |
kernel_size (int): Kernel size of the convolutional layers. | |
Defaults to 5. | |
stride (int): Stride of the convolutional layers. Defaults to 3. | |
use_spectral_norm (bool): Whether to use spectral normalization. | |
Defaults to False. | |
""" | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
in_channels = [1, 32, 128, 512, 1024] | |
out_channels = [32, 128, 512, 1024, 1024] | |
self.convs = torch.nn.ModuleList( | |
[ | |
norm_f( | |
torch.nn.Conv2d( | |
in_ch, | |
out_ch, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
) | |
for in_ch, out_ch in zip(in_channels, out_channels) | |
] | |
) | |
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) | |
def forward(self, x): | |
""" | |
Forward pass of the discriminator. | |
Args: | |
x (torch.Tensor): Input audio signal. | |
""" | |
fmap = [] | |
b, c, t = x.shape | |
if t % self.period != 0: | |
n_pad = self.period - (t % self.period) | |
x = torch.nn.functional.pad(x, (0, n_pad), "reflect") | |
x = x.view(b, c, -1, self.period) | |
for conv in self.convs: | |
x = self.lrelu(conv(x)) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |