Spaces:
Runtime error
Runtime error
import torch | |
import json | |
import os | |
version_config_paths = [ | |
os.path.join("v1", "32000.json"), | |
os.path.join("v1", "40000.json"), | |
os.path.join("v1", "48000.json"), | |
os.path.join("v2", "48000.json"), | |
os.path.join("v2", "40000.json"), | |
os.path.join("v2", "32000.json"), | |
] | |
def singleton(cls): | |
instances = {} | |
def get_instance(*args, **kwargs): | |
if cls not in instances: | |
instances[cls] = cls(*args, **kwargs) | |
return instances[cls] | |
return get_instance | |
class Config: | |
def __init__(self): | |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
self.is_half = self.device != "cpu" | |
self.gpu_name = ( | |
torch.cuda.get_device_name(int(self.device.split(":")[-1])) | |
if self.device.startswith("cuda") | |
else None | |
) | |
self.json_config = self.load_config_json() | |
self.gpu_mem = None | |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
def load_config_json(self) -> dict: | |
configs = {} | |
for config_file in version_config_paths: | |
config_path = os.path.join("rvc", "configs", config_file) | |
with open(config_path, "r") as f: | |
configs[config_file] = json.load(f) | |
return configs | |
def has_mps(self) -> bool: | |
# Check if Metal Performance Shaders are available - for macOS 12.3+. | |
return torch.backends.mps.is_available() | |
def has_xpu(self) -> bool: | |
# Check if XPU is available. | |
return hasattr(torch, "xpu") and torch.xpu.is_available() | |
def set_precision(self, precision): | |
if precision not in ["fp32", "fp16"]: | |
raise ValueError("Invalid precision type. Must be 'fp32' or 'fp16'.") | |
fp16_run_value = precision == "fp16" | |
preprocess_target_version = "3.7" if precision == "fp16" else "3.0" | |
preprocess_path = os.path.join( | |
os.path.dirname(__file__), | |
os.pardir, | |
"rvc", | |
"train", | |
"preprocess", | |
"preprocess.py", | |
) | |
for config_path in version_config_paths: | |
full_config_path = os.path.join("rvc", "configs", config_path) | |
try: | |
with open(full_config_path, "r") as f: | |
config = json.load(f) | |
config["train"]["fp16_run"] = fp16_run_value | |
with open(full_config_path, "w") as f: | |
json.dump(config, f, indent=4) | |
except FileNotFoundError: | |
print(f"File not found: {full_config_path}") | |
if os.path.exists(preprocess_path): | |
with open(preprocess_path, "r") as f: | |
preprocess_content = f.read() | |
preprocess_content = preprocess_content.replace( | |
"3.0" if precision == "fp16" else "3.7", preprocess_target_version | |
) | |
with open(preprocess_path, "w") as f: | |
f.write(preprocess_content) | |
return f"Overwritten preprocess and config.json to use {precision}." | |
def get_precision(self): | |
if not version_config_paths: | |
raise FileNotFoundError("No configuration paths provided.") | |
full_config_path = os.path.join("rvc", "configs", version_config_paths[0]) | |
try: | |
with open(full_config_path, "r") as f: | |
config = json.load(f) | |
fp16_run_value = config["train"].get("fp16_run", False) | |
precision = "fp16" if fp16_run_value else "fp32" | |
return precision | |
except FileNotFoundError: | |
print(f"File not found: {full_config_path}") | |
return None | |
def device_config(self) -> tuple: | |
if self.device.startswith("cuda"): | |
self.set_cuda_config() | |
elif self.has_mps(): | |
self.device = "mps" | |
self.is_half = False | |
self.set_precision("fp32") | |
else: | |
self.device = "cpu" | |
self.is_half = False | |
self.set_precision("fp32") | |
# Configuration for 6GB GPU memory | |
x_pad, x_query, x_center, x_max = ( | |
(3, 10, 60, 65) if self.is_half else (1, 6, 38, 41) | |
) | |
if self.gpu_mem is not None and self.gpu_mem <= 4: | |
# Configuration for 5GB GPU memory | |
x_pad, x_query, x_center, x_max = (1, 5, 30, 32) | |
return x_pad, x_query, x_center, x_max | |
def set_cuda_config(self): | |
i_device = int(self.device.split(":")[-1]) | |
self.gpu_name = torch.cuda.get_device_name(i_device) | |
# Zluda | |
if self.gpu_name.endswith("[ZLUDA]"): | |
print("Zluda compatibility enabled, experimental feature.") | |
torch.backends.cudnn.enabled = False | |
torch.backends.cuda.enable_flash_sdp(False) | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_mem_efficient_sdp(False) | |
low_end_gpus = ["16", "P40", "P10", "1060", "1070", "1080"] | |
if ( | |
any(gpu in self.gpu_name for gpu in low_end_gpus) | |
and "V100" not in self.gpu_name.upper() | |
): | |
self.is_half = False | |
self.set_precision("fp32") | |
self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // ( | |
1024**3 | |
) | |
def max_vram_gpu(gpu): | |
if torch.cuda.is_available(): | |
gpu_properties = torch.cuda.get_device_properties(gpu) | |
total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) | |
return total_memory_gb | |
else: | |
return "0" | |
def get_gpu_info(): | |
ngpu = torch.cuda.device_count() | |
gpu_infos = [] | |
if torch.cuda.is_available() or ngpu != 0: | |
for i in range(ngpu): | |
gpu_name = torch.cuda.get_device_name(i) | |
mem = int( | |
torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 | |
+ 0.4 | |
) | |
gpu_infos.append(f"{i}: {gpu_name} ({mem} GB)") | |
if len(gpu_infos) > 0: | |
gpu_info = "\n".join(gpu_infos) | |
else: | |
gpu_info = "Unfortunately, there is no compatible GPU available to support your training." | |
return gpu_info | |
def get_number_of_gpus(): | |
if torch.cuda.is_available(): | |
num_gpus = torch.cuda.device_count() | |
return "-".join(map(str, range(num_gpus))) | |
else: | |
return "-" | |