Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from librosa.filters import mel | |
from typing import List | |
# Constants for readability | |
N_MELS = 128 | |
N_CLASS = 360 | |
# Define a helper function for creating convolutional blocks | |
class ConvBlockRes(nn.Module): | |
""" | |
A convolutional block with residual connection. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
momentum (float): Momentum for batch normalization. | |
""" | |
def __init__(self, in_channels, out_channels, momentum=0.01): | |
super(ConvBlockRes, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
) | |
if in_channels != out_channels: | |
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) | |
self.is_shortcut = True | |
else: | |
self.is_shortcut = False | |
def forward(self, x): | |
if self.is_shortcut: | |
return self.conv(x) + self.shortcut(x) | |
else: | |
return self.conv(x) + x | |
# Define a class for residual encoder blocks | |
class ResEncoderBlock(nn.Module): | |
""" | |
A residual encoder block. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
kernel_size (tuple): Size of the average pooling kernel. | |
n_blocks (int): Number of convolutional blocks in the block. | |
momentum (float): Momentum for batch normalization. | |
""" | |
def __init__( | |
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01 | |
): | |
super(ResEncoderBlock, self).__init__() | |
self.n_blocks = n_blocks | |
self.conv = nn.ModuleList() | |
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) | |
for _ in range(n_blocks - 1): | |
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
self.kernel_size = kernel_size | |
if self.kernel_size is not None: | |
self.pool = nn.AvgPool2d(kernel_size=kernel_size) | |
def forward(self, x): | |
for i in range(self.n_blocks): | |
x = self.conv[i](x) | |
if self.kernel_size is not None: | |
return x, self.pool(x) | |
else: | |
return x | |
# Define a class for the encoder | |
class Encoder(nn.Module): | |
""" | |
The encoder part of the DeepUnet. | |
Args: | |
in_channels (int): Number of input channels. | |
in_size (int): Size of the input tensor. | |
n_encoders (int): Number of encoder blocks. | |
kernel_size (tuple): Size of the average pooling kernel. | |
n_blocks (int): Number of convolutional blocks in each encoder block. | |
out_channels (int): Number of output channels for the first encoder block. | |
momentum (float): Momentum for batch normalization. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
in_size, | |
n_encoders, | |
kernel_size, | |
n_blocks, | |
out_channels=16, | |
momentum=0.01, | |
): | |
super(Encoder, self).__init__() | |
self.n_encoders = n_encoders | |
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) | |
self.layers = nn.ModuleList() | |
self.latent_channels = [] | |
for i in range(self.n_encoders): | |
self.layers.append( | |
ResEncoderBlock( | |
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum | |
) | |
) | |
self.latent_channels.append([out_channels, in_size]) | |
in_channels = out_channels | |
out_channels *= 2 | |
in_size //= 2 | |
self.out_size = in_size | |
self.out_channel = out_channels | |
def forward(self, x: torch.Tensor): | |
concat_tensors: List[torch.Tensor] = [] | |
x = self.bn(x) | |
for i in range(self.n_encoders): | |
t, x = self.layers[i](x) | |
concat_tensors.append(t) | |
return x, concat_tensors | |
# Define a class for the intermediate layer | |
class Intermediate(nn.Module): | |
""" | |
The intermediate layer of the DeepUnet. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
n_inters (int): Number of convolutional blocks in the intermediate layer. | |
n_blocks (int): Number of convolutional blocks in each intermediate block. | |
momentum (float): Momentum for batch normalization. | |
""" | |
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): | |
super(Intermediate, self).__init__() | |
self.n_inters = n_inters | |
self.layers = nn.ModuleList() | |
self.layers.append( | |
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum) | |
) | |
for _ in range(self.n_inters - 1): | |
self.layers.append( | |
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum) | |
) | |
def forward(self, x): | |
for i in range(self.n_inters): | |
x = self.layers[i](x) | |
return x | |
# Define a class for residual decoder blocks | |
class ResDecoderBlock(nn.Module): | |
""" | |
A residual decoder block. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
stride (tuple): Stride for transposed convolution. | |
n_blocks (int): Number of convolutional blocks in the block. | |
momentum (float): Momentum for batch normalization. | |
""" | |
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): | |
super(ResDecoderBlock, self).__init__() | |
out_padding = (0, 1) if stride == (1, 2) else (1, 1) | |
self.n_blocks = n_blocks | |
self.conv1 = nn.Sequential( | |
nn.ConvTranspose2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=stride, | |
padding=(1, 1), | |
output_padding=out_padding, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
) | |
self.conv2 = nn.ModuleList() | |
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) | |
for _ in range(n_blocks - 1): | |
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
def forward(self, x, concat_tensor): | |
x = self.conv1(x) | |
x = torch.cat((x, concat_tensor), dim=1) | |
for i in range(self.n_blocks): | |
x = self.conv2[i](x) | |
return x | |
# Define a class for the decoder | |
class Decoder(nn.Module): | |
""" | |
The decoder part of the DeepUnet. | |
Args: | |
in_channels (int): Number of input channels. | |
n_decoders (int): Number of decoder blocks. | |
stride (tuple): Stride for transposed convolution. | |
n_blocks (int): Number of convolutional blocks in each decoder block. | |
momentum (float): Momentum for batch normalization. | |
""" | |
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): | |
super(Decoder, self).__init__() | |
self.layers = nn.ModuleList() | |
self.n_decoders = n_decoders | |
for _ in range(self.n_decoders): | |
out_channels = in_channels // 2 | |
self.layers.append( | |
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum) | |
) | |
in_channels = out_channels | |
def forward(self, x, concat_tensors): | |
for i in range(self.n_decoders): | |
x = self.layers[i](x, concat_tensors[-1 - i]) | |
return x | |
# Define a class for the DeepUnet architecture | |
class DeepUnet(nn.Module): | |
""" | |
The DeepUnet architecture. | |
Args: | |
kernel_size (tuple): Size of the average pooling kernel. | |
n_blocks (int): Number of convolutional blocks in each encoder/decoder block. | |
en_de_layers (int): Number of encoder/decoder layers. | |
inter_layers (int): Number of convolutional blocks in the intermediate layer. | |
in_channels (int): Number of input channels. | |
en_out_channels (int): Number of output channels for the first encoder block. | |
""" | |
def __init__( | |
self, | |
kernel_size, | |
n_blocks, | |
en_de_layers=5, | |
inter_layers=4, | |
in_channels=1, | |
en_out_channels=16, | |
): | |
super(DeepUnet, self).__init__() | |
self.encoder = Encoder( | |
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels | |
) | |
self.intermediate = Intermediate( | |
self.encoder.out_channel // 2, | |
self.encoder.out_channel, | |
inter_layers, | |
n_blocks, | |
) | |
self.decoder = Decoder( | |
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks | |
) | |
def forward(self, x): | |
x, concat_tensors = self.encoder(x) | |
x = self.intermediate(x) | |
x = self.decoder(x, concat_tensors) | |
return x | |
# Define a class for the end-to-end model | |
class E2E(nn.Module): | |
""" | |
The end-to-end model. | |
Args: | |
n_blocks (int): Number of convolutional blocks in each encoder/decoder block. | |
n_gru (int): Number of GRU layers. | |
kernel_size (tuple): Size of the average pooling kernel. | |
en_de_layers (int): Number of encoder/decoder layers. | |
inter_layers (int): Number of convolutional blocks in the intermediate layer. | |
in_channels (int): Number of input channels. | |
en_out_channels (int): Number of output channels for the first encoder block. | |
""" | |
def __init__( | |
self, | |
n_blocks, | |
n_gru, | |
kernel_size, | |
en_de_layers=5, | |
inter_layers=4, | |
in_channels=1, | |
en_out_channels=16, | |
): | |
super(E2E, self).__init__() | |
self.unet = DeepUnet( | |
kernel_size, | |
n_blocks, | |
en_de_layers, | |
inter_layers, | |
in_channels, | |
en_out_channels, | |
) | |
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) | |
if n_gru: | |
self.fc = nn.Sequential( | |
BiGRU(3 * 128, 256, n_gru), | |
nn.Linear(512, N_CLASS), | |
nn.Dropout(0.25), | |
nn.Sigmoid(), | |
) | |
else: | |
self.fc = nn.Sequential( | |
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid() | |
) | |
def forward(self, mel): | |
mel = mel.transpose(-1, -2).unsqueeze(1) | |
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2) | |
x = self.fc(x) | |
return x | |
# Define a class for the MelSpectrogram extractor | |
class MelSpectrogram(torch.nn.Module): | |
""" | |
Extracts Mel-spectrogram features from audio. | |
Args: | |
is_half (bool): Whether to use half-precision floating-point numbers. | |
n_mel_channels (int): Number of Mel-frequency bands. | |
sampling_rate (int): Sampling rate of the audio. | |
win_length (int): Length of the window function in samples. | |
hop_length (int): Hop size between frames in samples. | |
n_fft (int, optional): Length of the FFT window. Defaults to None, which uses win_length. | |
mel_fmin (int, optional): Minimum frequency for the Mel filter bank. Defaults to 0. | |
mel_fmax (int, optional): Maximum frequency for the Mel filter bank. Defaults to None. | |
clamp (float, optional): Minimum value for clamping the Mel-spectrogram. Defaults to 1e-5. | |
""" | |
def __init__( | |
self, | |
is_half, | |
n_mel_channels, | |
sampling_rate, | |
win_length, | |
hop_length, | |
n_fft=None, | |
mel_fmin=0, | |
mel_fmax=None, | |
clamp=1e-5, | |
): | |
super().__init__() | |
n_fft = win_length if n_fft is None else n_fft | |
self.hann_window = {} | |
mel_basis = mel( | |
sr=sampling_rate, | |
n_fft=n_fft, | |
n_mels=n_mel_channels, | |
fmin=mel_fmin, | |
fmax=mel_fmax, | |
htk=True, | |
) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer("mel_basis", mel_basis) | |
self.n_fft = win_length if n_fft is None else n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.sampling_rate = sampling_rate | |
self.n_mel_channels = n_mel_channels | |
self.clamp = clamp | |
self.is_half = is_half | |
def forward(self, audio, keyshift=0, speed=1, center=True): | |
factor = 2 ** (keyshift / 12) | |
n_fft_new = int(np.round(self.n_fft * factor)) | |
win_length_new = int(np.round(self.win_length * factor)) | |
hop_length_new = int(np.round(self.hop_length * speed)) | |
keyshift_key = str(keyshift) + "_" + str(audio.device) | |
if keyshift_key not in self.hann_window: | |
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to( | |
audio.device | |
) | |
fft = torch.stft( | |
audio, | |
n_fft=n_fft_new, | |
hop_length=hop_length_new, | |
win_length=win_length_new, | |
window=self.hann_window[keyshift_key], | |
center=center, | |
return_complex=True, | |
) | |
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2)) | |
if keyshift != 0: | |
size = self.n_fft // 2 + 1 | |
resize = magnitude.size(1) | |
if resize < size: | |
magnitude = F.pad(magnitude, (0, 0, 0, size - resize)) | |
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new | |
mel_output = torch.matmul(self.mel_basis, magnitude) | |
if self.is_half: | |
mel_output = mel_output.half() | |
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp)) | |
return log_mel_spec | |
# Define a class for the RMVPE0 predictor | |
class RMVPE0Predictor: | |
""" | |
A predictor for fundamental frequency (F0) based on the RMVPE0 model. | |
Args: | |
model_path (str): Path to the RMVPE0 model file. | |
is_half (bool): Whether to use half-precision floating-point numbers. | |
device (str, optional): Device to use for computation. Defaults to None, which uses CUDA if available. | |
""" | |
def __init__(self, model_path, is_half, device=None): | |
self.resample_kernel = {} | |
model = E2E(4, 1, (2, 2)) | |
ckpt = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(ckpt) | |
model.eval() | |
if is_half: | |
model = model.half() | |
self.model = model | |
self.resample_kernel = {} | |
self.is_half = is_half | |
self.device = device | |
self.mel_extractor = MelSpectrogram( | |
is_half, N_MELS, 16000, 1024, 160, None, 30, 8000 | |
).to(device) | |
self.model = self.model.to(device) | |
cents_mapping = 20 * np.arange(N_CLASS) + 1997.3794084376191 | |
self.cents_mapping = np.pad(cents_mapping, (4, 4)) | |
def mel2hidden(self, mel): | |
""" | |
Converts Mel-spectrogram features to hidden representation. | |
Args: | |
mel (torch.Tensor): Mel-spectrogram features. | |
""" | |
with torch.no_grad(): | |
n_frames = mel.shape[-1] | |
mel = F.pad( | |
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect" | |
) | |
hidden = self.model(mel) | |
return hidden[:, :n_frames] | |
def decode(self, hidden, thred=0.03): | |
""" | |
Decodes hidden representation to F0. | |
Args: | |
hidden (np.ndarray): Hidden representation. | |
thred (float, optional): Threshold for salience. Defaults to 0.03. | |
""" | |
cents_pred = self.to_local_average_cents(hidden, thred=thred) | |
f0 = 10 * (2 ** (cents_pred / 1200)) | |
f0[f0 == 10] = 0 | |
return f0 | |
def infer_from_audio(self, audio, thred=0.03): | |
""" | |
Infers F0 from audio. | |
Args: | |
audio (np.ndarray): Audio signal. | |
thred (float, optional): Threshold for salience. Defaults to 0.03. | |
""" | |
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0) | |
mel = self.mel_extractor(audio, center=True) | |
hidden = self.mel2hidden(mel) | |
hidden = hidden.squeeze(0).cpu().numpy() | |
if self.is_half == True: | |
hidden = hidden.astype("float32") | |
f0 = self.decode(hidden, thred=thred) | |
return f0 | |
def to_local_average_cents(self, salience, thred=0.05): | |
""" | |
Converts salience to local average cents. | |
Args: | |
salience (np.ndarray): Salience values. | |
thred (float, optional): Threshold for salience. Defaults to 0.05. | |
""" | |
center = np.argmax(salience, axis=1) | |
salience = np.pad(salience, ((0, 0), (4, 4))) | |
center += 4 | |
todo_salience = [] | |
todo_cents_mapping = [] | |
starts = center - 4 | |
ends = center + 5 | |
for idx in range(salience.shape[0]): | |
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) | |
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) | |
todo_salience = np.array(todo_salience) | |
todo_cents_mapping = np.array(todo_cents_mapping) | |
product_sum = np.sum(todo_salience * todo_cents_mapping, 1) | |
weight_sum = np.sum(todo_salience, 1) | |
devided = product_sum / weight_sum | |
maxx = np.max(salience, axis=1) | |
devided[maxx <= thred] = 0 | |
return devided | |
# Define a class for BiGRU (bidirectional GRU) | |
class BiGRU(nn.Module): | |
""" | |
A bidirectional GRU layer. | |
Args: | |
input_features (int): Number of input features. | |
hidden_features (int): Number of hidden features. | |
num_layers (int): Number of GRU layers. | |
""" | |
def __init__(self, input_features, hidden_features, num_layers): | |
super(BiGRU, self).__init__() | |
self.gru = nn.GRU( | |
input_features, | |
hidden_features, | |
num_layers=num_layers, | |
batch_first=True, | |
bidirectional=True, | |
) | |
def forward(self, x): | |
return self.gru(x)[0] | |