Spaces:
Runtime error
Runtime error
import os, sys, shutil | |
import tempfile | |
import gradio as gr | |
import pandas as pd | |
import requests | |
import wget | |
import json | |
from core import run_download_script | |
from assets.i18n.i18n import I18nAuto | |
from rvc.lib.utils import format_title | |
i18n = I18nAuto() | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
gradio_temp_dir = os.path.join(tempfile.gettempdir(), "gradio") | |
if os.path.exists(gradio_temp_dir): | |
shutil.rmtree(gradio_temp_dir) | |
def save_drop_model(dropbox): | |
if "pth" not in dropbox and "index" not in dropbox: | |
raise gr.Error( | |
message="The file you dropped is not a valid model file. Please try again." | |
) | |
else: | |
file_name = format_title(os.path.basename(dropbox)) | |
if ".pth" in dropbox: | |
model_name = format_title(file_name.split(".pth")[0]) | |
else: | |
if "v2" not in dropbox: | |
model_name = format_title( | |
file_name.split("_nprobe_1_")[1].split("_v1")[0] | |
) | |
else: | |
model_name = format_title( | |
file_name.split("_nprobe_1_")[1].split("_v2")[0] | |
) | |
model_path = os.path.join(now_dir, "logs", model_name) | |
if not os.path.exists(model_path): | |
os.makedirs(model_path) | |
if os.path.exists(os.path.join(model_path, file_name)): | |
os.remove(os.path.join(model_path, file_name)) | |
shutil.move(dropbox, os.path.join(model_path, file_name)) | |
print(f"{file_name} saved in {model_path}") | |
gr.Info(f"{file_name} saved in {model_path}") | |
return None | |
def search_models(name): | |
url = f"https://cjtfqzjfdimgpvpwhzlv.supabase.co/rest/v1/models?name=ilike.%25{name}%25&order=created_at.desc&limit=15" | |
headers = { | |
"apikey": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImNqdGZxempmZGltZ3B2cHdoemx2Iiwicm9sZSI6ImFub24iLCJpYXQiOjE2OTUxNjczODgsImV4cCI6MjAxMDc0MzM4OH0.7z5WMIbjR99c2Ooc0ma7B_FyGq10G8X-alkCYTkKR10" | |
} | |
response = requests.get(url, headers=headers) | |
data = response.json() | |
if len(data) == 0: | |
gr.Info(i18n("We couldn't find models by that name.")) | |
return None | |
else: | |
df = pd.DataFrame(data)[["name", "link", "epochs", "type"]] | |
df["link"] = df["link"].apply( | |
lambda x: f'<a href="{x}" target="_blank">{x}</a>' | |
) | |
return df | |
json_url = "https://huggingface.co./IAHispano/Applio/raw/main/pretrains.json" | |
def fetch_pretrained_data(): | |
pretraineds_custom_path = os.path.join( | |
"rvc", "models", "pretraineds", "pretraineds_custom" | |
) | |
os.makedirs(pretraineds_custom_path, exist_ok=True) | |
try: | |
with open( | |
os.path.join(pretraineds_custom_path, json_url.split("/")[-1]), "r" | |
) as f: | |
data = json.load(f) | |
except: | |
try: | |
response = requests.get(json_url) | |
response.raise_for_status() | |
data = response.json() | |
with open( | |
os.path.join(pretraineds_custom_path, json_url.split("/")[-1]), | |
"w", | |
encoding="utf-8", | |
) as f: | |
json.dump( | |
data, | |
f, | |
indent=2, | |
separators=(",", ": "), | |
ensure_ascii=False, | |
) | |
except: | |
data = { | |
"Titan": { | |
"32k": {"D": "null", "G": "null"}, | |
}, | |
} | |
return data | |
def get_pretrained_list(): | |
data = fetch_pretrained_data() | |
return list(data.keys()) | |
def get_pretrained_sample_rates(model): | |
data = fetch_pretrained_data() | |
return list(data[model].keys()) | |
def download_pretrained_model(model, sample_rate): | |
data = fetch_pretrained_data() | |
paths = data[model][sample_rate] | |
pretraineds_custom_path = os.path.join( | |
"rvc", "models", "pretraineds", "pretraineds_custom" | |
) | |
os.makedirs(pretraineds_custom_path, exist_ok=True) | |
d_url = f"https://huggingface.co./{paths['D']}" | |
g_url = f"https://huggingface.co./{paths['G']}" | |
gr.Info("Downloading Pretrained Model...") | |
print("Downloading Pretrained Model...") | |
wget.download(d_url, out=pretraineds_custom_path) | |
wget.download(g_url, out=pretraineds_custom_path) | |
def update_sample_rate_dropdown(model): | |
return { | |
"choices": get_pretrained_sample_rates(model), | |
"value": get_pretrained_sample_rates(model)[0], | |
"__type__": "update", | |
} | |
def download_tab(): | |
with gr.Column(): | |
gr.Markdown(value=i18n("## Download Model")) | |
model_link = gr.Textbox( | |
label=i18n("Model Link"), | |
placeholder=i18n("Introduce the model link"), | |
interactive=True, | |
) | |
model_download_output_info = gr.Textbox( | |
label=i18n("Output Information"), | |
info=i18n("The output information will be displayed here."), | |
value="", | |
max_lines=8, | |
interactive=False, | |
) | |
model_download_button = gr.Button(i18n("Download Model")) | |
model_download_button.click( | |
fn=run_download_script, | |
inputs=[model_link], | |
outputs=[model_download_output_info], | |
api_name="model_download", | |
) | |
gr.Markdown(value=i18n("## Drop files")) | |
dropbox = gr.File( | |
label=i18n( | |
"Drag your .pth file and .index file into this space. Drag one and then the other." | |
), | |
type="filepath", | |
) | |
dropbox.upload( | |
fn=save_drop_model, | |
inputs=[dropbox], | |
outputs=[dropbox], | |
) | |
gr.Markdown(value=i18n("## Search Model")) | |
search_name = gr.Textbox( | |
label=i18n("Model Name"), | |
placeholder=i18n("Introduce the model name to search."), | |
interactive=True, | |
) | |
search_table = gr.Dataframe(datatype="markdown") | |
search = gr.Button(i18n("Search")) | |
search.click( | |
fn=search_models, | |
inputs=[search_name], | |
outputs=[search_table], | |
) | |
search_name.submit(search_models, [search_name], search_table) | |
gr.Markdown(value=i18n("## Download Pretrained Models")) | |
pretrained_model = gr.Dropdown( | |
label=i18n("Pretrained"), | |
info=i18n("Select the pretrained model you want to download."), | |
choices=get_pretrained_list(), | |
value="Titan", | |
interactive=True, | |
) | |
pretrained_sample_rate = gr.Dropdown( | |
label=i18n("Sampling Rate"), | |
info=i18n("And select the sampling rate."), | |
choices=get_pretrained_sample_rates(pretrained_model.value), | |
value="40k", | |
interactive=True, | |
allow_custom_value=True, | |
) | |
pretrained_model.change( | |
update_sample_rate_dropdown, | |
inputs=[pretrained_model], | |
outputs=[pretrained_sample_rate], | |
) | |
download_pretrained = gr.Button(i18n("Download")) | |
download_pretrained.click( | |
fn=download_pretrained_model, | |
inputs=[pretrained_model, pretrained_sample_rate], | |
outputs=[], | |
) | |