Spaces:
Runtime error
Runtime error
import os, sys | |
import librosa | |
import soundfile as sf | |
import numpy as np | |
import re | |
import unicodedata | |
from fairseq import checkpoint_utils | |
import wget | |
import logging | |
logging.getLogger("fairseq").setLevel(logging.WARNING) | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
def load_audio(file, sample_rate): | |
try: | |
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
audio, sr = sf.read(file) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.T) | |
if sr != sample_rate: | |
audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate) | |
except Exception as error: | |
raise RuntimeError(f"An error occurred loading the audio: {error}") | |
return audio.flatten() | |
def format_title(title): | |
formatted_title = ( | |
unicodedata.normalize("NFKD", title).encode("ascii", "ignore").decode("utf-8") | |
) | |
formatted_title = re.sub(r"[\u2500-\u257F]+", "", formatted_title) | |
formatted_title = re.sub(r"[^\w\s.-]", "", formatted_title) | |
formatted_title = re.sub(r"\s+", "_", formatted_title) | |
return formatted_title | |
def load_embedding(embedder_model, custom_embedder=None): | |
embedder_root = os.path.join(now_dir, "rvc", "models", "embedders") | |
embedding_list = { | |
"contentvec": os.path.join(embedder_root, "contentvec_base.pt"), | |
"japanese-hubert-base": os.path.join(embedder_root, "japanese-hubert-base.pt"), | |
"chinese-hubert-large": os.path.join(embedder_root, "chinese-hubert-large.pt"), | |
} | |
online_embedders = { | |
"japanese-hubert-base": "https://huggingface.co./rinna/japanese-hubert-base/resolve/main/fairseq/model.pt", | |
"chinese-hubert-large": "https://huggingface.co./TencentGameMate/chinese-hubert-large/resolve/main/chinese-hubert-large-fairseq-ckpt.pt", | |
} | |
if embedder_model == "custom": | |
model_path = custom_embedder | |
if not custom_embedder and os.path.exists(custom_embedder): | |
model_path = embedding_list["contentvec"] | |
else: | |
model_path = embedding_list[embedder_model] | |
if embedder_model in online_embedders: | |
model_path = embedding_list[embedder_model] | |
url = online_embedders[embedder_model] | |
print(f"\nDownloading {url} to {model_path}...") | |
wget.download(url, out=model_path) | |
else: | |
model_path = embedding_list["contentvec"] | |
models = checkpoint_utils.load_model_ensemble_and_task( | |
[model_path], | |
suffix="", | |
) | |
# print(f"Embedding model {embedder_model} loaded successfully.") | |
return models | |