VoiceCloning-be's picture
Update rvc/train/train.py
2f8a1c5 verified
raw
history blame
30.4 kB
import torch
import sys
import os
import datetime
import glob
import json
import re
from distutils.util import strtobool
from utils import (
HParams,
plot_spectrogram_to_numpy,
summarize,
load_checkpoint,
save_checkpoint,
latest_checkpoint_path,
)
from random import randint, shuffle
from time import sleep
from time import time as ttime
from tqdm import tqdm
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
import torch.multiprocessing as mp
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
from data_utils import (
DistributedBucketSampler,
TextAudioCollate,
TextAudioCollateMultiNSFsid,
TextAudioLoader,
TextAudioLoaderMultiNSFsid,
)
from losses import (
discriminator_loss,
feature_loss,
generator_loss,
kl_loss,
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from rvc.train.process.extract_model import extract_model
from rvc.lib.algorithm import commons
from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminator
from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminatorV2
from rvc.lib.algorithm.synthesizers import Synthesizer
# Parse command line arguments
model_name = sys.argv[1]
save_every_epoch = int(sys.argv[2])
total_epoch = int(sys.argv[3])
pretrainG = sys.argv[4]
pretrainD = sys.argv[5]
version = sys.argv[6]
gpus = sys.argv[7]
batch_size = int(sys.argv[8])
sample_rate = int(sys.argv[9])
pitch_guidance = strtobool(sys.argv[10])
save_only_latest = strtobool(sys.argv[11])
save_every_weights = strtobool(sys.argv[12])
cache_data_in_gpu = strtobool(sys.argv[13])
overtraining_detector = strtobool(sys.argv[14])
overtraining_threshold = int(sys.argv[15])
sync_graph = strtobool(sys.argv[16])
current_dir = os.getcwd()
experiment_dir = os.path.join(current_dir, "logs", model_name)
config_save_path = os.path.join(experiment_dir, "config.json")
with open(config_save_path, "r") as f:
config = json.load(f)
config = HParams(**config)
config.data.training_files = os.path.join(experiment_dir, "filelist.txt")
os.environ["CUDA_VISIBLE_DEVICES"] = gpus.replace("-", ",")
n_gpus = len(gpus.split("-"))
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
global_step = 0
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
last_loss_gen_all = 0
# Disable logging
import logging
logging.getLogger("torch").setLevel(logging.ERROR)
class EpochRecorder:
"""
Records the time elapsed per epoch.
"""
def __init__(self):
self.last_time = ttime()
def record(self):
"""
Records the elapsed time and returns a formatted string.
"""
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
elapsed_time = round(elapsed_time, 1)
elapsed_time_str = str(datetime.timedelta(seconds=int(elapsed_time)))
current_time = datetime.datetime.now().strftime("%H:%M:%S")
return f"time={current_time} | training_speed={elapsed_time_str}"
def main():
"""
Main function to start the training process.
"""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
def start():
"""
Starts the training process with multi-GPU support.
"""
children = []
pid_file_path = os.path.join(experiment_dir, "train_pid.txt")
with open(pid_file_path, "w") as pid_file:
for i in range(n_gpus):
subproc = mp.Process(
target=run,
args=(
i,
n_gpus,
experiment_dir,
pretrainG,
pretrainD,
pitch_guidance,
custom_total_epoch,
custom_save_every_weights,
config,
),
)
children.append(subproc)
subproc.start()
pid_file.write(str(subproc.pid) + "\n")
for i in range(n_gpus):
children[i].join()
n_gpus = torch.cuda.device_count()
if torch.cuda.is_available() == False and torch.backends.mps.is_available() == True:
n_gpus = 1
if n_gpus < 1:
print("GPU not detected, reverting to CPU (not recommended)")
n_gpus = 1
if sync_graph == True:
print(
"Sync graph is now activated! With sync graph enabled, the model undergoes a single epoch of training. Once the graphs are synchronized, training proceeds for the previously specified number of epochs."
)
custom_total_epoch = 1
custom_save_every_weights = True
start()
# Synchronize graphs by modifying config files
model_config_file = os.path.join(experiment_dir, "config.json")
rvc_config_file = os.path.join(
now_dir, "rvc", "configs", version, str(sample_rate) + ".json"
)
if not os.path.exists(rvc_config_file):
rvc_config_file = os.path.join(
now_dir, "rvc", "configs", "v1", str(sample_rate) + ".json"
)
pattern = rf"{os.path.basename(model_name)}_1e_(\d+)s\.pth"
for filename in os.listdir(experiment_dir):
match = re.match(pattern, filename)
if match:
steps = int(match.group(1))
def edit_config(config_file):
"""
Edits the config file to synchronize graphs.
Args:
config_file (str): Path to the config file.
"""
with open(config_file, "r", encoding="utf8") as json_file:
config_data = json.load(json_file)
config_data["train"]["log_interval"] = steps
with open(config_file, "w", encoding="utf8") as json_file:
json.dump(
config_data,
json_file,
indent=2,
separators=(",", ": "),
ensure_ascii=False,
)
edit_config(model_config_file)
edit_config(rvc_config_file)
# Clean up unnecessary files
for root, dirs, files in os.walk(
os.path.join(now_dir, "logs", model_name), topdown=False
):
for name in files:
file_path = os.path.join(root, name)
file_name, file_extension = os.path.splitext(name)
if file_extension == ".0":
os.remove(file_path)
elif ("D" in name or "G" in name) and file_extension == ".pth":
os.remove(file_path)
elif (
"added" in name or "trained" in name
) and file_extension == ".index":
os.remove(file_path)
for name in dirs:
if name == "eval":
folder_path = os.path.join(root, name)
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item)
if os.path.isfile(item_path):
os.remove(item_path)
os.rmdir(folder_path)
print("Successfully synchronized graphs!")
custom_total_epoch = total_epoch
custom_save_every_weights = save_every_weights
start()
else:
custom_total_epoch = total_epoch
custom_save_every_weights = save_every_weights
start()
def run(
rank,
n_gpus,
experiment_dir,
pretrainG,
pretrainD,
pitch_guidance,
custom_total_epoch,
custom_save_every_weights,
config,
):
"""
Runs the training loop on a specific GPU.
Args:
rank (int): Rank of the current GPU.
n_gpus (int): Total number of GPUs.
"""
global global_step
if rank == 0:
writer = SummaryWriter(log_dir=experiment_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval"))
dist.init_process_group(
backend="gloo", init_method="env://", world_size=n_gpus, rank=rank
)
torch.manual_seed(config.train.seed)
if torch.cuda.is_available():
torch.cuda.set_device(rank)
# Create datasets and dataloaders
if pitch_guidance == True:
train_dataset = TextAudioLoaderMultiNSFsid(config.data)
elif pitch_guidance == False:
train_dataset = TextAudioLoader(config.data)
else:
raise ValueError(f"Unexpected value for pitch_guidance: {pitch_guidance}")
train_sampler = DistributedBucketSampler(
train_dataset,
batch_size * n_gpus,
[100, 200, 300, 400, 500, 600, 700, 800, 900],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
if pitch_guidance == True:
collate_fn = TextAudioCollateMultiNSFsid()
elif pitch_guidance == False:
collate_fn = TextAudioCollate()
train_loader = DataLoader(
train_dataset,
num_workers=4,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
prefetch_factor=8,
)
# Initialize models and optimizers
net_g = Synthesizer(
config.data.filter_length // 2 + 1,
config.train.segment_size // config.data.hop_length,
**config.model,
use_f0=pitch_guidance == True,
is_half=config.train.fp16_run,
sr=sample_rate,
)
if torch.cuda.is_available():
net_g = net_g.cuda(rank)
if version == "v1":
net_d = MultiPeriodDiscriminator(config.model.use_spectral_norm)
else:
net_d = MultiPeriodDiscriminatorV2(config.model.use_spectral_norm)
if torch.cuda.is_available():
net_d = net_d.cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
config.train.learning_rate,
betas=config.train.betas,
eps=config.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
config.train.learning_rate,
betas=config.train.betas,
eps=config.train.eps,
)
# Wrap models with DDP
if torch.cuda.is_available():
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
else:
net_g = DDP(net_g)
net_d = DDP(net_d)
# Load checkpoint if available
try:
print("Starting training...")
_, _, _, epoch_str = load_checkpoint(
latest_checkpoint_path(experiment_dir, "D_*.pth"), net_d, optim_d
)
_, _, _, epoch_str = load_checkpoint(
latest_checkpoint_path(experiment_dir, "G_*.pth"), net_g, optim_g
)
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str = 1
global_step = 0
if pretrainG != "":
if rank == 0:
print(f"Loaded pretrained (G) '{pretrainG}'")
if hasattr(net_g, "module"):
net_g.module.load_state_dict(
torch.load(pretrainG, map_location="cpu")["model"]
)
else:
net_g.load_state_dict(
torch.load(pretrainG, map_location="cpu")["model"]
)
if pretrainD != "":
if rank == 0:
print(f"Loaded pretrained (D) '{pretrainD}'")
if hasattr(net_d, "module"):
net_d.module.load_state_dict(
torch.load(pretrainD, map_location="cpu")["model"]
)
else:
net_d.load_state_dict(
torch.load(pretrainD, map_location="cpu")["model"]
)
# Initialize schedulers and scaler
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2
)
scaler = GradScaler(enabled=config.train.fp16_run)
cache = []
for epoch in range(epoch_str, total_epoch + 1):
if rank == 0:
train_and_evaluate(
rank,
epoch,
config,
[net_g, net_d],
[optim_g, optim_d],
scaler,
[train_loader, None],
[writer, writer_eval],
cache,
custom_save_every_weights,
custom_total_epoch,
)
else:
train_and_evaluate(
rank,
epoch,
config,
[net_g, net_d],
[optim_g, optim_d],
scaler,
[train_loader, None],
None,
cache,
custom_save_every_weights,
custom_total_epoch,
)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(
rank,
epoch,
hps,
nets,
optims,
scaler,
loaders,
writers,
cache,
custom_save_every_weights,
custom_total_epoch,
):
"""
Trains and evaluates the model for one epoch.
Args:
rank (int): Rank of the current GPU.
epoch (int): Current epoch number.
hps (Namespace): Hyperparameters.
nets (list): List of models [net_g, net_d].
optims (list): List of optimizers [optim_g, optim_d].
scaler (GradScaler): Gradient scaler for mixed precision training.
loaders (list): List of dataloaders [train_loader, eval_loader].
writers (list): List of TensorBoard writers [writer, writer_eval].
cache (list): List to cache data in GPU memory.
"""
global global_step, last_loss_gen_all, lowest_value
if epoch == 1:
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
last_loss_gen_all = 0.0
net_g, net_d = nets
optim_g, optim_d = optims
train_loader = loaders[0] if loaders is not None else None
if writers is not None:
writer = writers[0]
train_loader.batch_sampler.set_epoch(epoch)
net_g.train()
net_d.train()
# Data caching
if cache_data_in_gpu == True:
data_iterator = cache
if cache == []:
for batch_idx, info in enumerate(train_loader):
if pitch_guidance == True:
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
elif pitch_guidance == False:
(
phone,
phone_lengths,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
if torch.cuda.is_available():
phone = phone.cuda(rank, non_blocking=True)
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
if pitch_guidance == True:
pitch = pitch.cuda(rank, non_blocking=True)
pitchf = pitchf.cuda(rank, non_blocking=True)
sid = sid.cuda(rank, non_blocking=True)
spec = spec.cuda(rank, non_blocking=True)
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
wave = wave.cuda(rank, non_blocking=True)
wave_lengths = wave_lengths.cuda(rank, non_blocking=True)
if pitch_guidance == True:
cache.append(
(
batch_idx,
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
),
)
)
elif pitch_guidance == False:
cache.append(
(
batch_idx,
(
phone,
phone_lengths,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
),
)
)
else:
shuffle(cache)
else:
data_iterator = enumerate(train_loader)
epoch_recorder = EpochRecorder()
with tqdm(total=len(train_loader), leave=False) as pbar:
for batch_idx, info in data_iterator:
if pitch_guidance == True:
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
elif pitch_guidance == False:
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
if (cache_data_in_gpu == False) and torch.cuda.is_available():
phone = phone.cuda(rank, non_blocking=True)
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
if pitch_guidance == True:
pitch = pitch.cuda(rank, non_blocking=True)
pitchf = pitchf.cuda(rank, non_blocking=True)
sid = sid.cuda(rank, non_blocking=True)
spec = spec.cuda(rank, non_blocking=True)
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
wave = wave.cuda(rank, non_blocking=True)
# Forward pass
with autocast(enabled=config.train.fp16_run):
if pitch_guidance == True:
(
y_hat,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
) = net_g(
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid
)
elif pitch_guidance == False:
(
y_hat,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
mel = spec_to_mel_torch(
spec,
config.data.filter_length,
config.data.n_mel_channels,
config.data.sample_rate,
config.data.mel_fmin,
config.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, config.train.segment_size // config.data.hop_length
)
with autocast(enabled=False):
y_hat_mel = mel_spectrogram_torch(
y_hat.float().squeeze(1),
config.data.filter_length,
config.data.n_mel_channels,
config.data.sample_rate,
config.data.hop_length,
config.data.win_length,
config.data.mel_fmin,
config.data.mel_fmax,
)
if config.train.fp16_run == True:
y_hat_mel = y_hat_mel.half()
wave = commons.slice_segments(
wave, ids_slice * config.data.hop_length, config.train.segment_size
)
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
# Discriminator backward and update
optim_d.zero_grad()
scaler.scale(loss_disc).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value(net_d.parameters(), None)
scaler.step(optim_d)
# Generator backward and update
with autocast(enabled=config.train.fp16_run):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
loss_kl = (
kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl
)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
if loss_gen_all < lowest_value["value"]:
lowest_value["value"] = loss_gen_all
lowest_value["step"] = global_step
lowest_value["epoch"] = epoch
# print(f'Lowest generator loss updated: {lowest_value["value"]} at epoch {epoch}, step {global_step}')
if epoch > lowest_value["epoch"]:
print(
"Alert: The lower generating loss has been exceeded by a lower loss in a subsequent epoch."
)
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
# Logging and checkpointing
if rank == 0:
if global_step % config.train.log_interval == 0:
lr = optim_g.param_groups[0]["lr"]
# print("Epoch: {} [{:.0f}%]".format(epoch, 100.0 * batch_idx / len(train_loader)))
if loss_mel > 75:
loss_mel = 75
if loss_kl > 9:
loss_kl = 9
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
}
scalar_dict.update(
{
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/kl": loss_kl,
}
)
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
)
scalar_dict.update(
{
"loss/d_r/{}".format(i): v
for i, v in enumerate(losses_disc_r)
}
)
scalar_dict.update(
{
"loss/d_g/{}".format(i): v
for i, v in enumerate(losses_disc_g)
}
)
image_dict = {
"slice/mel_org": plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
),
"slice/mel_gen": plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
),
"all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
}
summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
global_step += 1
pbar.update(1)
# Save checkpoint
if epoch % save_every_epoch == False and rank == 0:
checkpoint_suffix = (
f"{global_step if save_only_latest == False else 2333333}.pth"
)
save_checkpoint(
net_g,
optim_g,
config.train.learning_rate,
epoch,
os.path.join(experiment_dir, "G_" + checkpoint_suffix),
)
save_checkpoint(
net_d,
optim_d,
config.train.learning_rate,
epoch,
os.path.join(experiment_dir, "D_" + checkpoint_suffix),
)
if rank == 0 and custom_save_every_weights == True:
if hasattr(net_g, "module"):
ckpt = net_g.module.state_dict()
else:
ckpt = net_g.state_dict()
extract_model(
ckpt=ckpt,
sr=sample_rate,
pitch_guidance=pitch_guidance == True,
name=model_name,
model_dir=os.path.join(
experiment_dir,
f"{model_name}_{epoch}e_{global_step}s.pth",
),
epoch=epoch,
step=global_step,
version=version,
hps=hps,
)
# Overtraining detection and best model saving
if overtraining_detector == True:
if epoch >= (lowest_value["epoch"] + overtraining_threshold):
print(
"Stopping training due to possible overtraining. Lowest generator loss: {} at epoch {}, step {}".format(
lowest_value["value"], lowest_value["epoch"], lowest_value["step"]
)
)
os._exit(2333333)
best_epoch = lowest_value["epoch"] + overtraining_threshold - epoch
if best_epoch == overtraining_threshold:
old_model_files = glob.glob(
os.path.join(
experiment_dir,
"{}_{}e_{}s_best_epoch.pth".format(model_name, "*", "*"),
)
)
for file in old_model_files:
os.remove(file)
if hasattr(net_g, "module"):
ckpt = net_g.module.state_dict()
else:
ckpt = net_g.state_dict()
extract_model(
ckpt=ckpt,
sr=sample_rate,
pitch_guidance=pitch_guidance == True,
name=model_name,
model_dir=os.path.join(
experiment_dir,
f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth",
),
epoch=epoch,
step=global_step,
version=version,
hps=hps,
)
# Print training progress
if rank == 0:
lowest_value_rounded = float(lowest_value["value"]) # Convert to float
lowest_value_rounded = round(
lowest_value_rounded, 3
) # Round to 3 decimal place
if epoch > 1 and overtraining_detector == True:
print(
f"{model_name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()} | lowest_value={lowest_value_rounded} (epoch {lowest_value['epoch']} and step {lowest_value['step']}) | Number of epochs remaining for overtraining: {lowest_value['epoch'] + overtraining_threshold - epoch}"
)
elif epoch > 1 and overtraining_detector == False:
print(
f"{model_name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()} | lowest_value={lowest_value_rounded} (epoch {lowest_value['epoch']} and step {lowest_value['step']})"
)
else:
print(
f"{model_name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()}"
)
last_loss_gen_all = loss_gen_all
# Save the final model
if epoch >= custom_total_epoch and rank == 0:
lowest_value_rounded = float(lowest_value["value"]) # Convert to float
lowest_value_rounded = round(
lowest_value_rounded, 3
) # Round to 3 decimal place
print(
f"Training has been successfully completed with {epoch} epoch, {global_step} steps and {round(loss_gen_all.item(), 3)} loss gen."
)
print(
f"Lowest generator loss: {lowest_value_rounded} at epoch {lowest_value['epoch']}, step {lowest_value['step']}"
)
pid_file_path = os.path.join(experiment_dir, "train_pid.txt")
os.remove(pid_file_path)
if hasattr(net_g, "module"):
ckpt = net_g.module.state_dict()
else:
ckpt = net_g.state_dict()
extract_model(
ckpt=ckpt,
sr=sample_rate,
pitch_guidance=pitch_guidance == True,
name=model_name,
model_dir=os.path.join(
experiment_dir,
f"{model_name}_{epoch}e_{global_step}s.pth",
),
epoch=epoch,
step=global_step,
version=version,
hps=hps,
)
sleep(1)
os._exit(2333333)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
main()