Spaces:
Runtime error
Runtime error
File size: 8,050 Bytes
4efe6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import torch
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from typing import Optional
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock1, ResBlock2
from rvc.lib.algorithm.commons import init_weights
class Generator(torch.nn.Module):
"""Generator for synthesizing audio.
Args:
initial_channel (int): Number of channels in the initial convolutional layer.
resblock (str): Type of residual block to use (1 or 2).
resblock_kernel_sizes (list): Kernel sizes of the residual blocks.
resblock_dilation_sizes (list): Dilation rates of the residual blocks.
upsample_rates (list): Upsampling rates.
upsample_initial_channel (int): Number of channels in the initial upsampling layer.
upsample_kernel_sizes (list): Kernel sizes of the upsampling layers.
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
"""
def __init__(
self,
initial_channel,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=0,
):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = torch.nn.Conv1d(
initial_channel, upsample_initial_channel, 7, 1, padding=3
)
resblock = ResBlock1 if resblock == "1" else ResBlock2
self.ups = torch.nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
torch.nn.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
self.resblocks = torch.nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)
):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = torch.nn.functional.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def __prepare_scriptable__(self):
"""Prepares the module for scripting."""
for l in self.ups:
for hook in l._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(l)
for l in self.resblocks:
for hook in l._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(l)
return self
def remove_weight_norm(self):
"""Removes weight normalization from the upsampling and residual blocks."""
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class SineGen(torch.nn.Module):
"""Sine wave generator.
Args:
samp_rate (int): Sampling rate in Hz.
harmonic_num (int, optional): Number of harmonic overtones. Defaults to 0.
sine_amp (float, optional): Amplitude of sine waveform. Defaults to 0.1.
noise_std (float, optional): Standard deviation of Gaussian noise. Defaults to 0.003.
voiced_threshold (float, optional): F0 threshold for voiced/unvoiced classification. Defaults to 0.
flag_for_pulse (bool, optional): Whether this SineGen is used inside PulseGen. Defaults to False.
"""
def __init__(
self,
samp_rate,
harmonic_num=0,
sine_amp=0.1,
noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False,
):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sample_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
"""Converts F0 to voiced/unvoiced signal.
Args:
f0 (torch.Tensor): F0 tensor with shape (batch_size, length, 1)..
"""
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def forward(self, f0: torch.Tensor, upp: int):
"""Generates sine waves.
Args:
f0 (torch.Tensor): F0 tensor with shape (batch_size, length, 1).
upp (int): Upsampling factor.
"""
with torch.no_grad():
f0 = f0[:, None].transpose(1, 2)
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
# fundamental component
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in range(self.harmonic_num):
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
idx + 2
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
rad_values = (f0_buf / float(self.sample_rate)) % 1
rand_ini = torch.rand(
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
tmp_over_one = torch.cumsum(rad_values, 1)
tmp_over_one *= upp
tmp_over_one = torch.nn.functional.interpolate(
tmp_over_one.transpose(2, 1),
scale_factor=float(upp),
mode="linear",
align_corners=True,
).transpose(2, 1)
rad_values = torch.nn.functional.interpolate(
rad_values.transpose(2, 1), scale_factor=float(upp), mode="nearest"
).transpose(2, 1)
tmp_over_one %= 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sine_waves = torch.sin(
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * torch.pi
)
sine_waves = sine_waves * self.sine_amp
uv = self._f02uv(f0)
uv = torch.nn.functional.interpolate(
uv.transpose(2, 1), scale_factor=float(upp), mode="nearest"
).transpose(2, 1)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
|