Spaces:
Runtime error
Runtime error
File size: 6,230 Bytes
3a478bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os, sys
import librosa
import soundfile as sf
import numpy as np
import re
import unicodedata
import wget
import subprocess
from pydub import AudioSegment
import tempfile
from torch import nn
import logging
from transformers import HubertModel
import warnings
# Remove this to see warnings about transformers models
warnings.filterwarnings("ignore")
logging.getLogger("fairseq").setLevel(logging.ERROR)
logging.getLogger("faiss.loader").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
logging.getLogger("torch").setLevel(logging.ERROR)
now_dir = os.getcwd()
sys.path.append(now_dir)
base_path = os.path.join(now_dir, "rvc", "models", "formant", "stftpitchshift")
stft = base_path + ".exe" if sys.platform == "win32" else base_path
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
def load_audio(file, sample_rate):
try:
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
audio, sr = sf.read(file)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.T)
if sr != sample_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate)
except Exception as error:
raise RuntimeError(f"An error occurred loading the audio: {error}")
return audio.flatten()
def load_audio_infer(
file, sample_rate, formant_shifting, formant_qfrency, formant_timbre
):
try:
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
if not os.path.isfile(file):
raise FileNotFoundError(f"File not found: {file}")
audio, sr = sf.read(file)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.T)
if sr != sample_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate)
if formant_shifting:
audio = (audio * 32767).astype(np.int16)
audio_segment = AudioSegment(
audio.tobytes(),
frame_rate=sample_rate,
sample_width=2,
channels=1,
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_file_path = temp_file.name
audio_segment.export(temp_file_path, format="wav")
command = [
stft,
"-i",
temp_file_path,
"-q",
str(formant_qfrency),
"-t",
str(formant_timbre),
"-o",
f"{temp_file_path}_formatted.wav",
]
subprocess.run(command, shell=True)
formatted_audio_path = f"{temp_file_path}_formatted.wav"
audio, sr = sf.read(formatted_audio_path)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.T)
if sr != sample_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate)
except Exception as error:
raise RuntimeError(f"An error occurred loading the audio: {error}")
return audio.flatten()
def format_title(title):
formatted_title = (
unicodedata.normalize("NFKD", title).encode("ascii", "ignore").decode("utf-8")
)
formatted_title = re.sub(r"[\u2500-\u257F]+", "", formatted_title)
formatted_title = re.sub(r"[^\w\s.-]", "", formatted_title)
formatted_title = re.sub(r"\s+", "_", formatted_title)
return formatted_title
def load_embedding(embedder_model, custom_embedder=None):
embedder_root = os.path.join(now_dir, "rvc", "models", "embedders")
embedding_list = {
"contentvec": os.path.join(embedder_root, "contentvec"),
"chinese-hubert-base": os.path.join(embedder_root, "chinese_hubert_base"),
"japanese-hubert-base": os.path.join(embedder_root, "japanese_hubert_base"),
"korean-hubert-base": os.path.join(embedder_root, "korean_hubert_base"),
}
online_embedders = {
"contentvec": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/contentvec/pytorch_model.bin",
"chinese-hubert-base": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/pytorch_model.bin",
"japanese-hubert-base": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/pytorch_model.bin",
"korean-hubert-base": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/pytorch_model.bin",
}
config_files = {
"contentvec": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/contentvec/config.json",
"chinese-hubert-base": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/config.json",
"japanese-hubert-base": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/config.json",
"korean-hubert-base": "https://huggingface.co./IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/config.json",
}
if embedder_model == "custom":
if os.path.exists(custom_embedder):
model_path = custom_embedder
else:
print(f"Custom embedder not found: {custom_embedder}, using contentvec")
model_path = embedding_list["contentvec"]
else:
model_path = embedding_list[embedder_model]
bin_file = os.path.join(model_path, "pytorch_model.bin")
json_file = os.path.join(model_path, "config.json")
os.makedirs(model_path, exist_ok=True)
if not os.path.exists(bin_file):
url = online_embedders[embedder_model]
print(f"Downloading {url} to {model_path}...")
wget.download(url, out=bin_file)
if not os.path.exists(json_file):
url = config_files[embedder_model]
print(f"Downloading {url} to {model_path}...")
wget.download(url, out=json_file)
models = HubertModelWithFinalProj.from_pretrained(model_path)
return models
|