File size: 6,382 Bytes
3a478bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import json
import os


version_config_paths = [
    os.path.join("v1", "32000.json"),
    os.path.join("v1", "40000.json"),
    os.path.join("v1", "48000.json"),
    os.path.join("v2", "48000.json"),
    os.path.join("v2", "40000.json"),
    os.path.join("v2", "32000.json"),
]


def singleton(cls):
    instances = {}

    def get_instance(*args, **kwargs):
        if cls not in instances:
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]

    return get_instance


@singleton
class Config:
    def __init__(self):
        self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
        self.is_half = self.device != "cpu"
        self.gpu_name = (
            torch.cuda.get_device_name(int(self.device.split(":")[-1]))
            if self.device.startswith("cuda")
            else None
        )
        self.json_config = self.load_config_json()
        self.gpu_mem = None
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    def load_config_json(self) -> dict:
        configs = {}
        for config_file in version_config_paths:
            config_path = os.path.join("rvc", "configs", config_file)
            with open(config_path, "r") as f:
                configs[config_file] = json.load(f)
        return configs

    def has_mps(self) -> bool:
        # Check if Metal Performance Shaders are available - for macOS 12.3+.
        return torch.backends.mps.is_available()

    def has_xpu(self) -> bool:
        # Check if XPU is available.
        return hasattr(torch, "xpu") and torch.xpu.is_available()

    def set_precision(self, precision):
        if precision not in ["fp32", "fp16"]:
            raise ValueError("Invalid precision type. Must be 'fp32' or 'fp16'.")

        fp16_run_value = precision == "fp16"
        preprocess_target_version = "3.7" if precision == "fp16" else "3.0"
        preprocess_path = os.path.join(
            os.path.dirname(__file__),
            os.pardir,
            "rvc",
            "train",
            "preprocess",
            "preprocess.py",
        )

        for config_path in version_config_paths:
            full_config_path = os.path.join("rvc", "configs", config_path)
            try:
                with open(full_config_path, "r") as f:
                    config = json.load(f)
                config["train"]["fp16_run"] = fp16_run_value
                with open(full_config_path, "w") as f:
                    json.dump(config, f, indent=4)
            except FileNotFoundError:
                print(f"File not found: {full_config_path}")

        if os.path.exists(preprocess_path):
            with open(preprocess_path, "r") as f:
                preprocess_content = f.read()
            preprocess_content = preprocess_content.replace(
                "3.0" if precision == "fp16" else "3.7", preprocess_target_version
            )
            with open(preprocess_path, "w") as f:
                f.write(preprocess_content)

        return f"Overwritten preprocess and config.json to use {precision}."

    def get_precision(self):
        if not version_config_paths:
            raise FileNotFoundError("No configuration paths provided.")

        full_config_path = os.path.join("rvc", "configs", version_config_paths[0])
        try:
            with open(full_config_path, "r") as f:
                config = json.load(f)
            fp16_run_value = config["train"].get("fp16_run", False)
            precision = "fp16" if fp16_run_value else "fp32"
            return precision
        except FileNotFoundError:
            print(f"File not found: {full_config_path}")
            return None

    def device_config(self) -> tuple:
        if self.device.startswith("cuda"):
            self.set_cuda_config()
        elif self.has_mps():
            self.device = "mps"
            self.is_half = False
            self.set_precision("fp32")
        else:
            self.device = "cpu"
            self.is_half = False
            self.set_precision("fp32")

        # Configuration for 6GB GPU memory
        x_pad, x_query, x_center, x_max = (
            (3, 10, 60, 65) if self.is_half else (1, 6, 38, 41)
        )
        if self.gpu_mem is not None and self.gpu_mem <= 4:
            # Configuration for 5GB GPU memory
            x_pad, x_query, x_center, x_max = (1, 5, 30, 32)

        return x_pad, x_query, x_center, x_max

    def set_cuda_config(self):
        i_device = int(self.device.split(":")[-1])
        self.gpu_name = torch.cuda.get_device_name(i_device)
        # Zluda
        if self.gpu_name.endswith("[ZLUDA]"):
            print("Zluda compatibility enabled, experimental feature.")
            torch.backends.cudnn.enabled = False
            torch.backends.cuda.enable_flash_sdp(False)
            torch.backends.cuda.enable_math_sdp(True)
            torch.backends.cuda.enable_mem_efficient_sdp(False)
        low_end_gpus = ["16", "P40", "P10", "1060", "1070", "1080"]
        if (
            any(gpu in self.gpu_name for gpu in low_end_gpus)
            and "V100" not in self.gpu_name.upper()
        ):
            self.is_half = False
            self.set_precision("fp32")

        self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // (
            1024**3
        )


def max_vram_gpu(gpu):
    if torch.cuda.is_available():
        gpu_properties = torch.cuda.get_device_properties(gpu)
        total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024)
        return total_memory_gb
    else:
        return "0"


def get_gpu_info():
    ngpu = torch.cuda.device_count()
    gpu_infos = []
    if torch.cuda.is_available() or ngpu != 0:
        for i in range(ngpu):
            gpu_name = torch.cuda.get_device_name(i)
            mem = int(
                torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024
                + 0.4
            )
            gpu_infos.append(f"{i}: {gpu_name} ({mem} GB)")
    if len(gpu_infos) > 0:
        gpu_info = "\n".join(gpu_infos)
    else:
        gpu_info = "Unfortunately, there is no compatible GPU available to support your training."
    return gpu_info


def get_number_of_gpus():
    if torch.cuda.is_available():
        num_gpus = torch.cuda.device_count()
        return "-".join(map(str, range(num_gpus)))
    else:
        return "-"