File size: 9,590 Bytes
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import glob
import torch
import numpy as np
from scipy.io.wavfile import read
from collections import OrderedDict
import matplotlib.pylab as plt

MATPLOTLIB_FLAG = False


def replace_keys_in_dict(d, old_key_part, new_key_part):
    """
    Replaces keys in a dictionary recursively.

    Args:
        d (dict or OrderedDict): The dictionary to update.
        old_key_part (str): The part of the key to replace.
        new_key_part (str): The new part of the key.
    """
    if isinstance(d, OrderedDict):
        updated_dict = OrderedDict()
    else:
        updated_dict = {}
    for key, value in d.items():
        if isinstance(key, str):
            new_key = key.replace(old_key_part, new_key_part)
        else:
            new_key = key
        if isinstance(value, dict):
            value = replace_keys_in_dict(value, old_key_part, new_key_part)
        updated_dict[new_key] = value
    return updated_dict


def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
    """
    Loads a checkpoint from a file.

    Args:
        checkpoint_path (str): Path to the checkpoint file.
        model (torch.nn.Module): The model to load the checkpoint into.
        optimizer (torch.optim.Optimizer, optional): The optimizer to load the state from. Defaults to None.
        load_opt (int, optional): Whether to load the optimizer state. Defaults to 1.
    """
    assert os.path.isfile(checkpoint_path)
    checkpoint_old_dict = torch.load(checkpoint_path, map_location="cpu")
    checkpoint_new_version_path = os.path.join(
        os.path.dirname(checkpoint_path),
        f"{os.path.splitext(os.path.basename(checkpoint_path))[0]}_new_version.pth",
    )

    torch.save(
        replace_keys_in_dict(
            replace_keys_in_dict(
                checkpoint_old_dict, ".weight_v", ".parametrizations.weight.original1"
            ),
            ".weight_g",
            ".parametrizations.weight.original0",
        ),
        checkpoint_new_version_path,
    )

    os.remove(checkpoint_path)
    os.rename(checkpoint_new_version_path, checkpoint_path)

    checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
    saved_state_dict = checkpoint_dict["model"]
    if hasattr(model, "module"):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            new_state_dict[k] = saved_state_dict[k]
            if saved_state_dict[k].shape != state_dict[k].shape:
                print(
                    "shape-%s-mismatch|need-%s|get-%s",
                    k,
                    state_dict[k].shape,
                    saved_state_dict[k].shape,
                )
                raise KeyError
        except:
            print("%s is not in the checkpoint", k)
            new_state_dict[k] = v
    if hasattr(model, "module"):
        model.module.load_state_dict(new_state_dict, strict=False)
    else:
        model.load_state_dict(new_state_dict, strict=False)

    iteration = checkpoint_dict["iteration"]
    learning_rate = checkpoint_dict["learning_rate"]
    if optimizer is not None and load_opt == 1:
        optimizer.load_state_dict(checkpoint_dict["optimizer"])
    print(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})")
    return model, optimizer, learning_rate, iteration


def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
    """
    Saves a checkpoint to a file.

    Args:
        model (torch.nn.Module): The model to save.
        optimizer (torch.optim.Optimizer): The optimizer to save the state of.
        learning_rate (float): The current learning rate.
        iteration (int): The current iteration.
        checkpoint_path (str): The path to save the checkpoint to.
    """
    print(f"Saved model '{checkpoint_path}' (epoch {iteration})")
    checkpoint_old_version_path = os.path.join(
        os.path.dirname(checkpoint_path),
        f"{os.path.splitext(os.path.basename(checkpoint_path))[0]}_old_version.pth",
    )
    if hasattr(model, "module"):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    torch.save(
        {
            "model": state_dict,
            "iteration": iteration,
            "optimizer": optimizer.state_dict(),
            "learning_rate": learning_rate,
        },
        checkpoint_path,
    )
    checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu"))
    torch.save(
        replace_keys_in_dict(
            replace_keys_in_dict(
                checkpoint, ".parametrizations.weight.original1", ".weight_v"
            ),
            ".parametrizations.weight.original0",
            ".weight_g",
        ),
        checkpoint_old_version_path,
    )
    os.remove(checkpoint_path)
    os.rename(checkpoint_old_version_path, checkpoint_path)


def summarize(
    writer,
    global_step,
    scalars={},
    histograms={},
    images={},
    audios={},
    audio_sample_rate=22050,
):
    """
    Summarizes training statistics and logs them to a TensorBoard writer.

    Args:
        writer (SummaryWriter): The TensorBoard writer.
        global_step (int): The current global step.
        scalars (dict, optional): Dictionary of scalar values to log. Defaults to {}.
        histograms (dict, optional): Dictionary of histogram values to log. Defaults to {}.
        images (dict, optional): Dictionary of image values to log. Defaults to {}.
        audios (dict, optional): Dictionary of audio values to log. Defaults to {}.
        audio_sample_rate (int, optional): Sampling rate of the audio data. Defaults to 22050.
    """
    for k, v in scalars.items():
        writer.add_scalar(k, v, global_step)
    for k, v in histograms.items():
        writer.add_histogram(k, v, global_step)
    for k, v in images.items():
        writer.add_image(k, v, global_step, dataformats="HWC")
    for k, v in audios.items():
        writer.add_audio(k, v, global_step, audio_sample_rate)


def latest_checkpoint_path(dir_path, regex="G_*.pth"):
    """
    Returns the path to the latest checkpoint file in a directory.

    Args:
        dir_path (str): The directory to search for checkpoints.
        regex (str, optional): The regular expression to match checkpoint files. Defaults to "G_*.pth".
    """
    f_list = glob.glob(os.path.join(dir_path, regex))
    f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
    x = f_list[-1]
    return x


def plot_spectrogram_to_numpy(spectrogram):
    """
    Plots a spectrogram to a NumPy array.

    Args:
        spectrogram (numpy.ndarray): The spectrogram to plot.
    """
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib

        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True

    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def load_wav_to_torch(full_path):
    """
    Loads a WAV file into a PyTorch tensor.

    Args:
        full_path (str): The path to the WAV file.
    """
    sample_rate, data = read(full_path)
    return torch.FloatTensor(data.astype(np.float32)), sample_rate


def load_filepaths_and_text(filename, split="|"):
    """
    Loads filepaths and text from a file.

    Args:
        filename (str): The path to the file.
        split (str, optional): The delimiter used to split the lines. Defaults to "|".
    """
    with open(filename, encoding="utf-8") as f:
        filepaths_and_text = [line.strip().split(split) for line in f]
    return filepaths_and_text


class HParams:
    """
    A class for storing and accessing hyperparameters.

    Attributes:
        **kwargs: Keyword arguments representing hyperparameters and their values.
    """

    def __init__(self, **kwargs):
        """
        Initializes an HParams object.

        Args:
            **kwargs: Keyword arguments representing hyperparameters and their values.
        """
        for k, v in kwargs.items():
            if type(v) == dict:
                v = HParams(**v)
            self[k] = v

    def keys(self):
        """
        Returns a list of hyperparameter keys.
        """
        return self.__dict__.keys()

    def items(self):
        """
        Returns a list of (key, value) pairs for each hyperparameter.
        """
        return self.__dict__.items()

    def values(self):
        """
        Returns a list of hyperparameter values.
        """
        return self.__dict__.values()

    def __len__(self):
        """
        Returns the number of hyperparameters.
        """
        return len(self.__dict__)

    def __getitem__(self, key):
        """
        Gets the value of a hyperparameter.
        """
        return getattr(self, key)

    def __setitem__(self, key, value):
        """
        Sets the value of a hyperparameter.
        """
        return setattr(self, key, value)

    def __contains__(self, key):
        """
        Checks if a hyperparameter key exists.
        """
        return key in self.__dict__

    def __repr__(self):
        """
        Returns a string representation of the HParams object.
        """
        return self.__dict__.__repr__()