Spaces:
Runtime error
Runtime error
import torch | |
from diffusers import StableDiffusionXLPipeline | |
import numpy as np | |
import gradio as gr | |
import random | |
from compel import Compel, ReturnedEmbeddingsType | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe = pipe.to(device) | |
else: | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe = pipe.to(device) | |
pipe.safety_checker = None | |
pipe.load_lora_weights("artificialguybr/ps1redmond-ps1-game-graphics-lora-for-sdxl", weight_name="PS1Redmond-PS1Game-Playstation1Graphics.safetensors") | |
lora_activation_words = "playstation 1 graphics, PS1 Game, " | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt_embeds=conditioning, | |
pooled_prompt_embeds=pooled, | |
negative_prompt_embeds=neg_conditioning, | |
negative_pooled_prompt_embeds=neg_pooled, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_weight} | |
).images[0] | |
return image | |
def get_embeds(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight): | |
compel = Compel( | |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , | |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True] | |
) | |
prompt = lora_activation_words + prompt | |
conditioning, pooled = compel(prompt) | |
neg_conditioning, neg_pooled = compel(negative_prompt) | |
image = infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight) | |
return image | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Text-to-Image Gradio Template | |
Currently running on {device.upper()}. | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
lora_weight = gr.Slider( | |
label="LoRA weight", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.01, | |
value=1, | |
) | |
run_button.click( | |
fn = get_embeds, | |
inputs = [prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight], | |
outputs = [result] | |
) | |
demo.launch(debug=True) |