Vladislawoo commited on
Commit
4f93011
·
1 Parent(s): fdba767

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from transformers import AutoTokenizer, AutoModel
7
+ import faiss
8
+
9
+ model_name = "cointegrated/rubert-tiny2"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModel.from_pretrained(model_name)
12
+
13
+ df = pd.read_csv('final_data.csv')
14
+
15
+ MAX_LEN = 300
16
+
17
+ def embed_bert_cls(text, model=model, tokenizer=tokenizer):
18
+ t = tokenizer(text,
19
+ padding=True,
20
+ truncation=True,
21
+ return_tensors='pt',
22
+ max_length=MAX_LEN)
23
+ with torch.no_grad():
24
+ model_output = model(**{k: v.to(model.device) for k, v in t.items()})
25
+ embeddings = model_output.last_hidden_state[:, 0, :]
26
+ embeddings = torch.nn.functional.normalize(embeddings)
27
+ return embeddings[0].cpu().squeeze()
28
+
29
+ embeddings = np.loadtxt('embeddings.txt')
30
+ embeddings_tensor = [torch.tensor(embedding) for embedding in embeddings]
31
+
32
+ # Создание индекса Faiss
33
+ embeddings_matrix = np.stack(embeddings)
34
+ index = faiss.IndexFlatIP(embeddings_matrix.shape[1])
35
+ index.add(embeddings_matrix)
36
+
37
+ st.title('Приложение для рекомендации книг')
38
+
39
+ text = st.text_input('Введите запрос:')
40
+ num_results = st.number_input('Введите количество рекомендаций:', min_value=1, max_value=50, value=3)
41
+
42
+
43
+ # Add a button to trigger the recommendation process
44
+ recommend_button = st.button('Получить рекомендации')
45
+
46
+ if text and recommend_button: # Check if the user entered text and clicked the button
47
+
48
+ # Встраивание запроса и поиск ближайших векторов с использованием Faiss
49
+ query_embedding = embed_bert_cls(text)
50
+ query_embedding = query_embedding.numpy().astype('float32')
51
+ _, indices = index.search(np.expand_dims(query_embedding, axis=0), num_results)
52
+
53
+ st.subheader('Топ рекомендуемых книг:')
54
+ for i in indices[0]:
55
+ recommended_embedding = embeddings_tensor[i].numpy() # Вектор рекомендованной книги
56
+ similarity = np.dot(query_embedding, recommended_embedding) # Косинусное сходство
57
+ similarity_percent = similarity * 100
58
+
59
+ col1, col2 = st.columns([1, 3])
60
+
61
+ with col1:
62
+ st.image(df['image'][i], use_column_width=True)
63
+
64
+ with col2:
65
+ st.write(f"**Название книги:** {df['title'][i]}")
66
+ st.write(f"**Автор:** {df['author'][i]}")
67
+ st.write(f"**Описание:** {df['annotation'][i]}")
68
+ st.write(f"**Оценка сходства:** {similarity_percent:.2f}%")
69
+
70
+ st.write("---")
71
+
72
+
73
+
74
+
75
+