Spaces:
Running
Running
Vitomir Jovanović
commited on
Commit
·
a1d6c7a
1
Parent(s):
e9fda99
Streamlit + Readme.md
Browse files- README.md +21 -1
- app.py +23 -65
- main.py +6 -3
- models/__pycache__/data_reader.cpython-312.pyc +0 -0
- models/__pycache__/prompt_search_engine.cpython-312.pyc +0 -0
- models/data_reader.py +2 -0
- models/prompt_search_engine.py +6 -2
README.md
CHANGED
@@ -10,4 +10,24 @@ pinned: false
|
|
10 |
short_description: Semantic Search engine with Faiss
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
short_description: Semantic Search engine with Faiss
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-
|
14 |
+
|
15 |
+
### For local deployment run
|
16 |
+
```
|
17 |
+
main.py
|
18 |
+
```
|
19 |
+
which will create swagger app with endpoints on [localhost:8084](http://127.0.0.1:8084/docs). First endpoint return the top k semanticaly most similar prompts with query prompt. Second endpoint returns all similarites with query (only applicable for very small datasets).
|
20 |
+
|
21 |
+
```
|
22 |
+
data_reader.py
|
23 |
+
```
|
24 |
+
creates data of various prompts for encoding into vector database. Local database encoded only 6000 prompts.
|
25 |
+
|
26 |
+
Faiss index that is used is small and not optimized, used for experimental datasets. Search is brute force, not optimised.
|
27 |
+
|
28 |
+
### Streamlit
|
29 |
+
```
|
30 |
+
streamlit run app.py
|
31 |
+
```
|
32 |
+
should be run for streamlit app, it can be assessed locally on http://localhost:8501.
|
33 |
+
|
app.py
CHANGED
@@ -6,13 +6,22 @@ from models.Query import Query, SimilarPrompt, SearchResponse, PromptVector, Vec
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import os
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Streamlit App Interface
|
18 |
st.title("Prompt Search Engine")
|
@@ -27,17 +36,12 @@ k = st.number_input("Number of similar prompts to retrieve:", min_value=1, max_v
|
|
27 |
# Button to trigger search
|
28 |
if st.button("Search Prompts"):
|
29 |
if query_input:
|
30 |
-
|
31 |
-
similar_prompts, distances = search_engine.most_similar(query.prompt, top_k=k)
|
32 |
|
33 |
# Format and display search results
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
]
|
38 |
-
st.write("Search Results:")
|
39 |
-
for result in response:
|
40 |
-
st.write(f"Prompt: {result.prompt}, Distance: {result.distance}")
|
41 |
else:
|
42 |
st.error("Please enter a prompt.")
|
43 |
|
@@ -47,54 +51,8 @@ st.write("### Vector Similarities")
|
|
47 |
|
48 |
if st.button("Retrieve All Vector Similarities"):
|
49 |
if query_input:
|
50 |
-
|
51 |
-
query_embedding = search_engine.model.encode([query.prompt]) # Encode the prompt to a vector
|
52 |
all_similarities = search_engine.cosine_similarity(query_embedding, search_engine.index)
|
53 |
-
|
54 |
-
# Format and display vector similarities
|
55 |
-
response = [
|
56 |
-
PromptVector(vector=index, distance=float(distance))
|
57 |
-
for index, distance in enumerate(all_similarities)
|
58 |
-
]
|
59 |
-
st.write("Vector Similarities:")
|
60 |
-
for result in response:
|
61 |
-
st.write(f"Vector Index: {result.vector}, Distance: {result.distance}")
|
62 |
else:
|
63 |
-
st.error("Please enter a prompt.")
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# # streamlit_app.py
|
68 |
-
# import streamlit as st
|
69 |
-
# import requests
|
70 |
-
|
71 |
-
# # Streamlit app title
|
72 |
-
# st.title("Top K Search with Vector DataBase")
|
73 |
-
|
74 |
-
# # FastAPI endpoint URL
|
75 |
-
# # url = "http://localhost:8084/search/"
|
76 |
-
# url = "https://huggingface.co/search/"
|
77 |
-
|
78 |
-
# # Input fields in Streamlit
|
79 |
-
# id = st.text_input("Enter ID:", value="1")
|
80 |
-
# prompt = st.text_input("Enter your prompt:")
|
81 |
-
# k = st.number_input("Top K results:", min_value=1, max_value=100, value=3)
|
82 |
-
|
83 |
-
# # Trigger the search when the button is clicked
|
84 |
-
# if st.button("Search"):
|
85 |
-
# # Construct the request payload
|
86 |
-
# payload = {
|
87 |
-
# "id": id,
|
88 |
-
# "prompt": prompt,
|
89 |
-
# "k": k
|
90 |
-
# }
|
91 |
-
|
92 |
-
# # Make the POST request
|
93 |
-
# response = requests.post(url, json=payload)
|
94 |
-
|
95 |
-
# # Handle the response
|
96 |
-
# if response.status_code == 200:
|
97 |
-
# results = response.json()
|
98 |
-
# st.write(results)
|
99 |
-
# else:
|
100 |
-
# st.error(f"Error: {response.status_code} - {response.text}")
|
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import os
|
8 |
|
9 |
+
# Cache the prompts data to avoid reloading every time
|
10 |
+
@st.cache_data
|
11 |
+
def load_prompts():
|
12 |
+
prompt_path = "models/prompts_data.jsonl"
|
13 |
+
return load_prompts_from_jsonl(prompt_path)
|
14 |
+
|
15 |
+
# Cache the search engine initialization
|
16 |
+
@st.cache_resource
|
17 |
+
def get_search_engine():
|
18 |
+
search_engine = PromptSearchEngine()
|
19 |
+
prompts = load_prompts()
|
20 |
+
search_engine.add_prompts_to_vector_database(prompts)
|
21 |
+
return search_engine
|
22 |
+
|
23 |
+
# Initialize search engine only once
|
24 |
+
search_engine = get_search_engine()
|
25 |
|
26 |
# Streamlit App Interface
|
27 |
st.title("Prompt Search Engine")
|
|
|
36 |
# Button to trigger search
|
37 |
if st.button("Search Prompts"):
|
38 |
if query_input:
|
39 |
+
similar_prompts, distances = search_engine.most_similar(query_input, top_k=k)
|
|
|
40 |
|
41 |
# Format and display search results
|
42 |
+
st.write(f"Search Results: ")
|
43 |
+
for i, (prompt, distance) in enumerate(zip(similar_prompts, distances)):
|
44 |
+
st.write(f"{i+1}. Prompt: {prompt}, Distance: {distance}")
|
|
|
|
|
|
|
|
|
45 |
else:
|
46 |
st.error("Please enter a prompt.")
|
47 |
|
|
|
51 |
|
52 |
if st.button("Retrieve All Vector Similarities"):
|
53 |
if query_input:
|
54 |
+
query_embedding = search_engine.model.encode([query_input]) # Encode the prompt to a vector
|
|
|
55 |
all_similarities = search_engine.cosine_similarity(query_embedding, search_engine.index)
|
56 |
+
st.write(f"Vector Similarities: {all_similarities}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
else:
|
58 |
+
st.error("Please enter a prompt.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main.py
CHANGED
@@ -30,7 +30,7 @@ def read_root():
|
|
30 |
|
31 |
@app.post("/search/")
|
32 |
async def search_prompts(query: Query, k: int = 3):
|
33 |
-
print(f'Prompt: {query
|
34 |
similar_prompts, distances = search_engine.most_similar(query.prompt, top_k=k)
|
35 |
print(f'Similar Prompts {similar_prompts}')
|
36 |
print(f'Distances {distances}')
|
@@ -48,6 +48,9 @@ async def all_vectors(query: Query):
|
|
48 |
|
49 |
query_embedding = search_engine.model.encode([query.prompt]) # Encode the prompt to a vector
|
50 |
all_similarities = search_engine.cosine_similarity(query_embedding, search_engine.index)
|
|
|
|
|
|
|
51 |
response = [
|
52 |
PromptVector(vector=index, distance=float(distance))
|
53 |
for index, distance in enumerate(all_similarities)
|
@@ -56,7 +59,7 @@ async def all_vectors(query: Query):
|
|
56 |
|
57 |
if __name__ == "__main__":
|
58 |
# Server Config
|
59 |
-
SERVER_HOST_IP = socket.gethostbyname(socket.gethostname())
|
60 |
-
|
61 |
SERVER_PORT = int(8084)
|
62 |
uvicorn.run(app, host=SERVER_HOST_IP, port=SERVER_PORT)
|
|
|
30 |
|
31 |
@app.post("/search/")
|
32 |
async def search_prompts(query: Query, k: int = 3):
|
33 |
+
print(f'Prompt: {query}')
|
34 |
similar_prompts, distances = search_engine.most_similar(query.prompt, top_k=k)
|
35 |
print(f'Similar Prompts {similar_prompts}')
|
36 |
print(f'Distances {distances}')
|
|
|
48 |
|
49 |
query_embedding = search_engine.model.encode([query.prompt]) # Encode the prompt to a vector
|
50 |
all_similarities = search_engine.cosine_similarity(query_embedding, search_engine.index)
|
51 |
+
print(f'Prompt: {query}')
|
52 |
+
print(f'All Vector Similarities: {all_similarities}')
|
53 |
+
print(40*'****')
|
54 |
response = [
|
55 |
PromptVector(vector=index, distance=float(distance))
|
56 |
for index, distance in enumerate(all_similarities)
|
|
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
# Server Config
|
62 |
+
# SERVER_HOST_IP = socket.gethostbyname(socket.gethostname())
|
63 |
+
SERVER_HOST_IP = socket.gethostbyname("localhost") # for local deployment
|
64 |
SERVER_PORT = int(8084)
|
65 |
uvicorn.run(app, host=SERVER_HOST_IP, port=SERVER_PORT)
|
models/__pycache__/data_reader.cpython-312.pyc
CHANGED
Binary files a/models/__pycache__/data_reader.cpython-312.pyc and b/models/__pycache__/data_reader.cpython-312.pyc differ
|
|
models/__pycache__/prompt_search_engine.cpython-312.pyc
CHANGED
Binary files a/models/__pycache__/prompt_search_engine.cpython-312.pyc and b/models/__pycache__/prompt_search_engine.cpython-312.pyc differ
|
|
models/data_reader.py
CHANGED
@@ -32,11 +32,13 @@ def read_data(jsonl_file_path):
|
|
32 |
print(row)
|
33 |
|
34 |
def load_prompts_from_jsonl(file_path):
|
|
|
35 |
prompts = []
|
36 |
with open(file_path, 'r') as f:
|
37 |
for line in f:
|
38 |
data = json.loads(line) # Each line is a JSON object
|
39 |
prompts.append(data) # Extract the 'prompt' field
|
|
|
40 |
return prompts
|
41 |
|
42 |
|
|
|
32 |
print(row)
|
33 |
|
34 |
def load_prompts_from_jsonl(file_path):
|
35 |
+
print('Loading prompts from:', file_path)
|
36 |
prompts = []
|
37 |
with open(file_path, 'r') as f:
|
38 |
for line in f:
|
39 |
data = json.loads(line) # Each line is a JSON object
|
40 |
prompts.append(data) # Extract the 'prompt' field
|
41 |
+
print("Data loaded successfully.")
|
42 |
return prompts
|
43 |
|
44 |
|
models/prompt_search_engine.py
CHANGED
@@ -6,6 +6,7 @@ import faiss
|
|
6 |
|
7 |
class PromptSearchEngine:
|
8 |
def __init__(self, model_name='bert-base-nli-mean-tokens'):
|
|
|
9 |
self.model = SentenceTransformer(model_name)
|
10 |
# Initialize FAISS index with right number of dimensions
|
11 |
self.embedding_dimension = self.model.get_sentence_embedding_dimension()
|
@@ -14,13 +15,16 @@ class PromptSearchEngine:
|
|
14 |
|
15 |
|
16 |
def add_prompts_to_vector_database(self, prompts):
|
|
|
17 |
embeddings = self.model.encode(prompts)
|
18 |
self.index.add(np.array(embeddings).astype('float32'))
|
19 |
self.prompts_track.extend(prompts)
|
|
|
20 |
|
21 |
|
22 |
def most_similar(self, query, top_k=5):
|
23 |
-
# Encode the
|
|
|
24 |
query_embedding = self.model.encode([query]).astype('float32')
|
25 |
|
26 |
# Optimizovana pretraga ali moramo promeniti vrstu indeksa
|
@@ -37,7 +41,7 @@ class PromptSearchEngine:
|
|
37 |
Args: query_vector: The query vector to compare against the corpus vectors. corpus_vectors: The set of corpus vectors to compare against the query vector.
|
38 |
Returns: The cosine similarity between the query vector and the corpus vectors.
|
39 |
"""
|
40 |
-
|
41 |
query_vector = np.array(query_vector).astype('float32')
|
42 |
query_norm = query_vector / np.linalg.norm(query_vector)
|
43 |
|
|
|
6 |
|
7 |
class PromptSearchEngine:
|
8 |
def __init__(self, model_name='bert-base-nli-mean-tokens'):
|
9 |
+
print("Search engine started!")
|
10 |
self.model = SentenceTransformer(model_name)
|
11 |
# Initialize FAISS index with right number of dimensions
|
12 |
self.embedding_dimension = self.model.get_sentence_embedding_dimension()
|
|
|
15 |
|
16 |
|
17 |
def add_prompts_to_vector_database(self, prompts):
|
18 |
+
print("Data encoding started...")
|
19 |
embeddings = self.model.encode(prompts)
|
20 |
self.index.add(np.array(embeddings).astype('float32'))
|
21 |
self.prompts_track.extend(prompts)
|
22 |
+
print("Data encoding completed!")
|
23 |
|
24 |
|
25 |
def most_similar(self, query, top_k=5):
|
26 |
+
# Encode the
|
27 |
+
print('Finding the most similar vectors')
|
28 |
query_embedding = self.model.encode([query]).astype('float32')
|
29 |
|
30 |
# Optimizovana pretraga ali moramo promeniti vrstu indeksa
|
|
|
41 |
Args: query_vector: The query vector to compare against the corpus vectors. corpus_vectors: The set of corpus vectors to compare against the query vector.
|
42 |
Returns: The cosine similarity between the query vector and the corpus vectors.
|
43 |
"""
|
44 |
+
print('Searching for all similarities...')
|
45 |
query_vector = np.array(query_vector).astype('float32')
|
46 |
query_norm = query_vector / np.linalg.norm(query_vector)
|
47 |
|