Spaces:
Running
on
Zero
Running
on
Zero
import openai | |
import os | |
import argparse | |
import json | |
import ast | |
from multiprocessing.pool import Pool | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3") | |
parser.add_argument("--pred_path", required=True, help="The path to file containing prediction.") | |
parser.add_argument("--output_dir", required=True, help="The path to save annotation json files.") | |
parser.add_argument("--output_json", required=True, help="The path to save annotation final combined json file.") | |
parser.add_argument("--api_key", required=True, help="OpenAI API key.") | |
parser.add_argument("--num_tasks", required=True, type=int, help="Number of splits.") | |
args = parser.parse_args() | |
return args | |
def annotate(prediction_set, caption_files, output_dir): | |
""" | |
Evaluates question and answer pairs using GPT-3 | |
Returns a score for correctness. | |
""" | |
for file in caption_files: | |
key = file[:-5] # Strip file extension | |
qa_set = prediction_set[key] | |
question = qa_set['q'] | |
answer = qa_set['a'] | |
pred = qa_set['pred'] | |
try: | |
# Compute the correctness score | |
completion = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{ | |
"role": "system", | |
"content": | |
"You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. " | |
"Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:" | |
"------" | |
"##INSTRUCTIONS: " | |
"- Focus on the meaningful match between the predicted answer and the correct answer.\n" | |
"- Consider synonyms or paraphrases as valid matches.\n" | |
"- Evaluate the correctness of the prediction compared to the answer." | |
}, | |
{ | |
"role": "user", | |
"content": | |
"Please evaluate the following video-based question-answer pair:\n\n" | |
f"Question: {question}\n" | |
f"Correct Answer: {answer}\n" | |
f"Predicted Answer: {pred}\n\n" | |
"Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and 5, with 5 indicating the highest meaningful match. " | |
"Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING." | |
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. " | |
"For example, your response should look like this: {'pred': 'yes', 'score': 4.8}." | |
} | |
] | |
) | |
# Convert response to a Python dictionary. | |
response_message = completion["choices"][0]["message"]["content"] | |
response_dict = ast.literal_eval(response_message) | |
result_qa_pair = [response_dict, qa_set] | |
# Save the question-answer pairs to a json file. | |
with open(f"{output_dir}/{key}.json", "w") as f: | |
json.dump(result_qa_pair, f) | |
except Exception as e: | |
print(f"Error processing file '{key}': {e}") | |
def main(): | |
""" | |
Main function to control the flow of the program. | |
""" | |
# Parse arguments. | |
args = parse_args() | |
file = open(args.pred_path) | |
pred_contents = json.load(file) | |
# Dictionary to store the count of occurrences for each video_id | |
video_id_counts = {} | |
new_pred_contents = [] | |
# Iterate through each sample in pred_contents | |
for sample in pred_contents: | |
video_id = sample['video_name'] | |
if video_id in video_id_counts: | |
video_id_counts[video_id] += 1 | |
else: | |
video_id_counts[video_id] = 0 | |
# Create a new sample with the modified key | |
new_sample = sample | |
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}" | |
new_pred_contents.append(new_sample) | |
# Generating list of id's and corresponding files | |
id_list = [x['video_name'] for x in new_pred_contents] | |
caption_files = [f"{id}.json" for id in id_list] | |
output_dir = args.output_dir | |
# Generate output directory if not exists. | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Preparing dictionary of question-answer sets | |
prediction_set = {} | |
for sample in new_pred_contents: | |
id = sample['video_name'] | |
question = sample['Q'] | |
answer = sample['A'] | |
pred = sample['pred'] | |
qa_set = {"q": question, "a": answer, "pred": pred} | |
prediction_set[id] = qa_set | |
# Set the OpenAI API key. | |
openai.api_key = args.api_key | |
num_tasks = args.num_tasks | |
# While loop to ensure that all captions are processed. | |
while True: | |
try: | |
# Files that have not been processed yet. | |
completed_files = os.listdir(output_dir) | |
print(f"completed_files: {len(completed_files)}") | |
# Files that have not been processed yet. | |
incomplete_files = [f for f in caption_files if f not in completed_files] | |
print(f"incomplete_files: {len(incomplete_files)}") | |
# Break the loop when there are no incomplete files | |
if len(incomplete_files) == 0: | |
break | |
if len(incomplete_files) <= num_tasks: | |
num_tasks = 1 | |
# Split tasks into parts. | |
part_len = len(incomplete_files) // num_tasks | |
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)] | |
task_args = [(prediction_set, part, args.output_dir) for part in all_parts] | |
# Use a pool of workers to process the files in parallel. | |
with Pool() as pool: | |
pool.starmap(annotate, task_args) | |
except Exception as e: | |
print(f"Error: {e}") | |
# Combine all the processed files into one | |
combined_contents = {} | |
json_path = args.output_json | |
# Iterate through json files | |
for file_name in os.listdir(output_dir): | |
if file_name.endswith(".json"): | |
file_path = os.path.join(output_dir, file_name) | |
with open(file_path, "r") as json_file: | |
content = json.load(json_file) | |
combined_contents[file_name[:-5]] = content | |
# Write combined content to a json file | |
with open(json_path, "w") as json_file: | |
json.dump(combined_contents, json_file) | |
print("All evaluation completed!") | |
# Calculate average score and accuracy | |
score_sum = 0 | |
count = 0 | |
yes_count = 0 | |
no_count = 0 | |
for key, result in combined_contents.items(): | |
# Computing score | |
count += 1 | |
try : | |
score_match = result[0]['score'] | |
score = int(score_match) | |
score_sum += score | |
except: | |
print("Score not found for", key) | |
continue | |
# Computing accuracy | |
try: | |
pred = result[0]['pred'] | |
if "yes" in pred.lower(): | |
yes_count += 1 | |
elif "no" in pred.lower(): | |
no_count += 1 | |
except: | |
print("Prediction not found for", key) | |
continue | |
average_score = score_sum / count | |
accuracy = yes_count / (yes_count + no_count) | |
print("Yes count:", yes_count) | |
print("No count:", no_count) | |
print("Accuracy:", accuracy) | |
print("Average score:", average_score) | |
if __name__ == "__main__": | |
main() | |