Spaces:
Runtime error
Runtime error
Vishaltiwari2019
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,89 +1,67 @@
|
|
|
|
1 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
import torch
|
3 |
-
from PIL import Image, ImageDraw
|
4 |
-
import gradio as gr
|
5 |
-
import requests
|
6 |
import random
|
7 |
|
8 |
def detect_objects(image):
|
9 |
-
# Load the pre-trained DETR model
|
10 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
11 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
12 |
|
13 |
inputs = processor(images=image, return_tensors="pt")
|
14 |
outputs = model(**inputs)
|
15 |
|
16 |
-
# convert outputs (bounding boxes and class logits) to COCO API
|
17 |
-
# let's only keep detections with score > 0.9
|
18 |
target_sizes = torch.tensor([image.size[::-1]])
|
19 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
20 |
|
21 |
-
# Draw bounding boxes and labels on the image
|
22 |
draw = ImageDraw.Draw(image)
|
|
|
23 |
for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
|
24 |
box = [round(i, 2) for i in box.tolist()]
|
25 |
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
26 |
draw.rectangle(box, outline=color, width=3)
|
27 |
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}"
|
28 |
-
# Larger and bolder font
|
29 |
draw.text((box[0], box[1]), label_text, fill=color,)
|
|
|
30 |
|
31 |
-
return image
|
32 |
-
|
33 |
-
def detect_labels(image):
|
34 |
-
# Load the pre-trained DETR model
|
35 |
-
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
36 |
-
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
37 |
-
|
38 |
-
inputs = processor(images=image, return_tensors="pt")
|
39 |
-
outputs = model(**inputs)
|
40 |
|
41 |
-
|
42 |
-
# let's only keep detections with score > 0.9
|
43 |
-
target_sizes = torch.tensor([image.size[::-1]])
|
44 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
45 |
-
|
46 |
-
labels = []
|
47 |
-
for label_id in results["labels"]:
|
48 |
-
labels.append(model.config.id2label[label_id.item()])
|
49 |
-
|
50 |
-
return labels
|
51 |
-
|
52 |
-
def upload_image_with_boxes(file):
|
53 |
image = Image.open(file.name)
|
54 |
-
image_with_boxes = detect_objects(image)
|
55 |
-
return image_with_boxes
|
56 |
|
57 |
-
def
|
58 |
-
|
59 |
-
labels = detect_labels(image)
|
60 |
-
return ", ".join(labels)
|
61 |
|
62 |
-
|
63 |
-
|
|
|
64 |
inputs="file",
|
65 |
-
outputs="image",
|
66 |
-
title="Object Detection
|
67 |
-
description="Upload an image and detect objects using DETR model.
|
68 |
allow_flagging=False
|
69 |
)
|
70 |
|
|
|
71 |
iface_labels = gr.Interface(
|
72 |
-
fn=
|
73 |
-
inputs="
|
74 |
outputs="text",
|
75 |
-
title="Detected
|
76 |
-
description="
|
77 |
allow_flagging=False
|
78 |
)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
allow_flagging=False
|
87 |
)
|
88 |
|
89 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
3 |
import torch
|
4 |
+
from PIL import Image, ImageDraw
|
|
|
|
|
5 |
import random
|
6 |
|
7 |
def detect_objects(image):
|
|
|
8 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
9 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
10 |
|
11 |
inputs = processor(images=image, return_tensors="pt")
|
12 |
outputs = model(**inputs)
|
13 |
|
|
|
|
|
14 |
target_sizes = torch.tensor([image.size[::-1]])
|
15 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
16 |
|
|
|
17 |
draw = ImageDraw.Draw(image)
|
18 |
+
labels = []
|
19 |
for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
|
20 |
box = [round(i, 2) for i in box.tolist()]
|
21 |
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
22 |
draw.rectangle(box, outline=color, width=3)
|
23 |
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}"
|
|
|
24 |
draw.text((box[0], box[1]), label_text, fill=color,)
|
25 |
+
labels.append(label_text)
|
26 |
|
27 |
+
return image, labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
def upload_image(file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
image = Image.open(file.name)
|
31 |
+
image_with_boxes, labels = detect_objects(image)
|
32 |
+
return image_with_boxes, labels
|
33 |
|
34 |
+
def show_labels(labels):
|
35 |
+
return "\n".join(labels)
|
|
|
|
|
36 |
|
37 |
+
# Interface to display the image with bounding boxes
|
38 |
+
iface_objects = gr.Interface(
|
39 |
+
fn=upload_image,
|
40 |
inputs="file",
|
41 |
+
outputs=["image", "text"],
|
42 |
+
title="Object Detection",
|
43 |
+
description="Upload an image and detect objects using DETR model.",
|
44 |
allow_flagging=False
|
45 |
)
|
46 |
|
47 |
+
# Interface to display the detected labels
|
48 |
iface_labels = gr.Interface(
|
49 |
+
fn=show_labels,
|
50 |
+
inputs="text",
|
51 |
outputs="text",
|
52 |
+
title="Detected Labels",
|
53 |
+
description="Displays the labels detected in the uploaded image.",
|
54 |
allow_flagging=False
|
55 |
)
|
56 |
|
57 |
+
# Combine interfaces with a tapped interface
|
58 |
+
interface = gr.Interface(
|
59 |
+
[iface_objects, iface_labels],
|
60 |
+
inputs="text",
|
61 |
+
outputs="text",
|
62 |
+
title="Object Detection with Labels",
|
63 |
+
description="Upload an image and view detected objects and labels.",
|
64 |
allow_flagging=False
|
65 |
)
|
66 |
|
67 |
+
interface.launch()
|