Viona commited on
Commit
95d4295
·
1 Parent(s): 6be1f2a

writing README.md

Browse files
Files changed (4) hide show
  1. README.md +89 -5
  2. app.py +1 -1
  3. compute_score.py +7 -5
  4. requirements.txt +2 -2
README.md CHANGED
@@ -8,11 +8,95 @@ sdk_version: 3.17.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
 
 
 
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- Please note that we are considering including other evaluation metrics , which are popular in VQA and Reading Comprehension tasks.
 
 
 
 
 
 
 
 
 
 
15
 
16
- Answers are not case sensitive
17
- Answers are space sensitive
18
- Answers or tokens comprising answers are not limited to a fixed size dictionary. It could be any word/token which is present in the document.
 
8
  app_file: app.py
9
  pinned: false
10
  ---
11
+ tags:
12
+ - evaluate
13
+ - metric
14
+ description: >-
15
+ This metric wrap the official scoring script for version 1 of the Average Normalized Levenshtein Similarity (ANLS).
16
 
17
+ ---
18
+
19
+ # Metric Card for ANLS
20
+
21
+ ## Metric description
22
+ This metric wraps the official scoring script for version 1 of the Average Normalized Levenshtein Similarity (ANLS).
23
+
24
+ The ANLS smoothly captures the OCR mistakes applying a slight penalization in case of correct intended responses, but badly recognized. It also makes use of a threshold of value 0.5 that dictates whether the output of the metric will be the ANLS if its value is equal or bigger than 0.5 or 0 otherwise. The key point of this threshold is to determine if the answer has been correctly selected but not properly recognized, or on the contrary, the output is a wrong text selected from the options and given as an answer.
25
+
26
+ More formally, the ANLS between the net output and the ground truth answers is given by equation 1. Where N is the total number of questions, M total number of GT answers per question, a<sub>ij</sub> the ground truth answers where i = {0, ..., N}, and j = {0, ..., M}, and o<sub>qi</sub> be the network's answer for the i<sup>th</sup> question q<sub>i</sub>.
27
+
28
+ ![alt text](https://rrc.cvc.uab.es/files/ANLS.png)
29
+
30
+ Reference: [Evaluation Metric](https://rrc.cvc.uab.es/?ch=11&com=tasks)
31
+
32
+ ## How to use
33
+ The metric takes two lists of question-answers dictionaries as inputs, one with the predictions of the model and the other with the references to be compared to.
34
+
35
+ _predictions_: List of question-answers dictionaries with the following key-values:
36
+
37
+ - 'question_id': id of the question-answer pair as given in the references (see below)
38
+ - 'prediction_text': the text of the answer
39
+
40
+ _references_: List of question-answers dictionaries with the following key-values:
41
+
42
+ - 'question_id': id of the question-answer pair (see above)
43
+ - 'answers': list of possible texts for the answer, as a list of strings
44
+
45
+ ```python
46
+ from evaluate import load
47
+ squad_metric = load("anls")
48
+ results = anls_metric.compute(predictions=predictions, references=references)
49
+ ```
50
+ ## Output values
51
+
52
+ This metric outputs a dictionary with value 'anls_score' between 0.0 and 1.0
53
+
54
+ ```
55
+ {'anls_score': 1.0}
56
+ ```
57
+
58
+ ## Examples
59
+
60
+
61
+ ```python
62
+ from evaluate import load
63
+ anls_metric = load("anls")
64
+ predictions = [{'question_id': '10285', 'prediction_text': 'Denver Broncos'},
65
+ {'question_id': '18601', 'prediction_text': '12/15/89'},
66
+ {'question_id': '16734', 'prediction_text': 'Dear dr. Lobo'}]
67
+
68
+ references = [{"answers": ["Denver Broncos", "Denver R. Broncos"], 'question_id': '10285'},
69
+ {'answers': ['12/15/88'], 'question_id': '18601'},
70
+ {'answers': ['Dear Dr. Lobo', 'Dr. Lobo'], 'question_id': '16734'}]
71
+ results = anls_metric.compute(predictions=predictions, references=references)
72
+ results
73
+ {'anls_metric': 1.0}
74
+ ```
75
+
76
+
77
+ ## Limitations and bias
78
+ This metric works only with datasets that have the same format as specified above.
79
+
80
+ ## Considerations / Assumptions
81
+ As specified in website: [Tasks - Document Visual Question Answering](https://rrc.cvc.uab.es/?ch=17&com=tasks)
82
+
83
+ - Answers are not case sensitive
84
+ - Answers are space sensitive
85
+ - Answers or tokens comprising answers are not limited to a fixed size dictionary. It could be any word/token which is present in the document.
86
+
87
+ ## Citation
88
 
89
+ @article{,
90
+ title = {Binary codes capable of correcting deletions, insertions, and reversals},
91
+ journal = {Soviet physics doklady},
92
+ volume = {10},
93
+ number = {8},
94
+ pages = {707--710},
95
+ year = {1966},
96
+ url = {https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf},
97
+ author = {V. I. Levenshtein},
98
+
99
+ ## Further References
100
 
101
+ - [The Stanford Question Answering Dataset: Background, Challenges, Progress (blog post)](https://rajpurkar.github.io/mlx/qa-and-squad/)
102
+ - [Hugging Face Course -- Question Answering](https://huggingface.co/course/chapter7/7)
 
app.py CHANGED
@@ -2,5 +2,5 @@ import evaluate
2
  from evaluate.utils import launch_gradio_widget
3
 
4
 
5
- module = evaluate.load("Viona/anls")
6
  launch_gradio_widget(module)
 
2
  from evaluate.utils import launch_gradio_widget
3
 
4
 
5
+ module = evaluate.load("anls")
6
  launch_gradio_widget(module)
compute_score.py CHANGED
@@ -4,24 +4,26 @@ from Levenshtein import ratio
4
  def compute_score(predictions, ground_truths):
5
  theta = 0.5
6
  anls_score = 0
 
7
  for qid, prediction in predictions.items():
8
  max_value = 0
9
  if qid in ground_truths:
10
  for x in ground_truths[qid]:
11
- nl = ratio(prediction, x)
 
12
  if nl < theta:
13
  score = 1 - nl
14
  if score > max_value:
15
  max_value = score
16
  anls_score += max_value
17
 
18
- return anls_score
19
 
20
 
21
  if __name__ == "__main__":
22
- predictions = [{'question_id': '10285', 'prediction_text': 'Denver Broncos'},
23
- {'question_id': '18601', 'prediction_text': '12/15/89'},
24
- {'question_id': '16734', 'prediction_text': 'Dear dr. Lobo'}]
25
 
26
  references = [{"answers": ["Denver Broncos", "Denver R. Broncos"], 'question_id': '10285'},
27
  {'answers': ['12/15/88'], 'question_id': '18601'},
 
4
  def compute_score(predictions, ground_truths):
5
  theta = 0.5
6
  anls_score = 0
7
+ total = 0
8
  for qid, prediction in predictions.items():
9
  max_value = 0
10
  if qid in ground_truths:
11
  for x in ground_truths[qid]:
12
+ total += 1
13
+ nl = ratio(prediction.lower(), x.lower())
14
  if nl < theta:
15
  score = 1 - nl
16
  if score > max_value:
17
  max_value = score
18
  anls_score += max_value
19
 
20
+ return anls_score/total
21
 
22
 
23
  if __name__ == "__main__":
24
+ predictions = [{'question_id': '10285', 'prediction_text': 'Denver R.'},
25
+ {'question_id': '18601', 'prediction_text': '12'},
26
+ {'question_id': '16734', 'prediction_text': 'dear'}]
27
 
28
  references = [{"answers": ["Denver Broncos", "Denver R. Broncos"], 'question_id': '10285'},
29
  {'answers': ['12/15/88'], 'question_id': '18601'},
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- evaluate
2
- python-Levenshtein
 
1
+ git+https://github.com/huggingface/evaluate
2
+ git+https://github.com/maxbachmann/python-Levenshtein.git