VinayHajare commited on
Commit
bce3574
·
1 Parent(s): 2b813f1

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +127 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import pipeline
3
+ from transformers.pipelines.audio_utils import ffmpeg_read
4
+ import gradio as gr
5
+ import pytube as pt
6
+
7
+ MODEL_NAME = "VinayHajare/whisper-small-finetuned-common-voice-mr"
8
+ BATCH_SIZE = 8
9
+ LANG = "mr"
10
+ device = 0 if torch.cuda.is_available() else "cpu"
11
+
12
+ pipe = pipeline(
13
+ task="automatic-speech-recognition",
14
+ model=MODEL_NAME,
15
+ chunk_length_s=30,
16
+ device=device,
17
+ )
18
+
19
+ # pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang)
20
+
21
+ # Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
22
+ def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
23
+ if seconds is not None:
24
+ milliseconds = round(seconds * 1000.0)
25
+
26
+ hours = milliseconds // 3_600_000
27
+ milliseconds -= hours * 3_600_000
28
+
29
+ minutes = milliseconds // 60_000
30
+ milliseconds -= minutes * 60_000
31
+
32
+ seconds = milliseconds // 1_000
33
+ milliseconds -= seconds * 1_000
34
+
35
+ hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
36
+ return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
37
+ else:
38
+ # we have a malformed timestamp so just return it as is
39
+ return seconds
40
+
41
+
42
+ def transcribe(file, task, return_timestamps):
43
+ outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps)
44
+ text = outputs["text"]
45
+ if return_timestamps:
46
+ timestamps = outputs["chunks"]
47
+ timestamps = [
48
+ f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
49
+ for chunk in timestamps
50
+ ]
51
+ text = "\n".join(str(feature) for feature in timestamps)
52
+ return text
53
+
54
+ def yt_transcribe(yt_url):
55
+ yt = pt.YouTube(yt_url)
56
+ html_embed_str = _return_yt_html_embed(yt_url)
57
+ stream = yt.streams.filter(only_audio=True)[0]
58
+ stream.download(filename="audio.mp3")
59
+
60
+ text = pipe("audio.mp3")["text"]
61
+
62
+ return html_embed_str, text
63
+
64
+ demo = gr.Blocks()
65
+
66
+ mic_transcribe = gr.Interface(
67
+ fn=transcribe,
68
+ inputs=[
69
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
70
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
71
+ gr.inputs.Checkbox(default=False, label="Return timestamps"),
72
+ ],
73
+ outputs="text",
74
+ layout="horizontal",
75
+ theme="huggingface",
76
+ title="Whisper Demo: Transcribe Marathi Audio",
77
+ description=(
78
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
79
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
80
+ " of arbitrary length."
81
+ ),
82
+ allow_flagging="never",
83
+ )
84
+
85
+ file_transcribe = gr.Interface(
86
+ fn=transcribe,
87
+ inputs=[
88
+ gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
89
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
90
+ gr.inputs.Checkbox(default=False, label="Return timestamps"),
91
+ ],
92
+ outputs="text",
93
+ layout="horizontal",
94
+ theme="huggingface",
95
+ title="Whisper Demo: Transcribe Marathi Audio",
96
+ description=(
97
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
98
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
99
+ " of arbitrary length."
100
+ ),
101
+ examples=[
102
+ ["./example.flac", "transcribe", False],
103
+ ["./example.flac", "transcribe", True],
104
+ ],
105
+ cache_examples=True,
106
+ allow_flagging="never",
107
+ )
108
+
109
+ yt_transcribe = gr.Interface(
110
+ fn=yt_transcribe,
111
+ inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
112
+ outputs=["html", "text"],
113
+ layout="horizontal",
114
+ theme="huggingface",
115
+ title="Whisper Demo: Transcribe Marathi YouTube Video",
116
+ description=(
117
+ "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
118
+ f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
119
+ " arbitrary length."
120
+ ),
121
+ allow_flagging="never",
122
+ )
123
+
124
+ with demo:
125
+ gr.TabbedInterface([mic_transcribe, file_transcribe,yt_transcribe], ["Transcribe Microphone", "Transcribe Audio File", "Transcribe YouTube Video"])
126
+
127
+ demo.launch(enable_queue=True)