import torch from transformers import AutoModel, AutoTokenizer from PIL import Image import gradio as gr import os # Load the OCR model and tokenizer tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, pad_token_id=tokenizer.eos_token_id).eval() # Ensure we are using CPU device = torch.device('cpu') model = model.to(device) # Function to perform OCR on the image file def perform_ocr(image_file_path): # Open the image using PIL image = Image.open(image_file_path) # Save the image temporarily temp_image_path = "temp_image.png" image.save(temp_image_path) # Use torch.no_grad() to avoid unnecessary memory usage with torch.no_grad(): # Perform OCR using the model (pass the file path of the saved image) result = model.chat(tokenizer, temp_image_path, ocr_type='ocr') # Clean up the temporary image file os.remove(temp_image_path) # Return the extracted text return result # Create the Gradio interface for file upload and OCR iface = gr.Interface(fn=perform_ocr, inputs="file", outputs="text", title="OCR Application", description="Upload an image to extract text.") # Launch the Gradio app iface.launch()