Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,33 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from PIL import Image
|
4 |
-
import gradio as gr
|
5 |
|
6 |
-
# Load the OCR model and tokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
8 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True,
|
9 |
low_cpu_mem_usage=True,
|
10 |
pad_token_id=tokenizer.eos_token_id).eval()
|
11 |
|
12 |
-
#
|
13 |
-
device = torch.device('
|
14 |
model = model.to(device)
|
15 |
|
16 |
# Function to perform OCR on the image
|
17 |
-
def perform_ocr(
|
18 |
-
#
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
return result
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
inputs=gr.Image(type="pil"), # Updated to gr.Image
|
26 |
-
outputs=gr.Textbox(), # Updated to gr.Textbox
|
27 |
-
title="OCR Web App",
|
28 |
-
description="Upload an image to extract text using the GOT-OCR2.0 model."
|
29 |
-
)
|
30 |
|
31 |
-
#
|
32 |
-
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from PIL import Image
|
|
|
4 |
|
5 |
+
# Load the OCR model and tokenizer with low memory usage in mind
|
6 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
7 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True,
|
8 |
low_cpu_mem_usage=True,
|
9 |
pad_token_id=tokenizer.eos_token_id).eval()
|
10 |
|
11 |
+
# Ensure we are using CPU
|
12 |
+
device = torch.device('cpu')
|
13 |
model = model.to(device)
|
14 |
|
15 |
# Function to perform OCR on the image
|
16 |
+
def perform_ocr(image_path):
|
17 |
+
# Open the image file
|
18 |
+
image = Image.open(image_path)
|
19 |
+
|
20 |
+
# Use torch.no_grad() to avoid unnecessary memory usage
|
21 |
+
with torch.no_grad():
|
22 |
+
# Perform OCR using the model
|
23 |
+
result = model.chat(tokenizer, image_path, ocr_type='ocr')
|
24 |
+
|
25 |
+
# Return the extracted text
|
26 |
return result
|
27 |
|
28 |
+
# Example usage with an image file path
|
29 |
+
image_path = "/content/id.jpg"
|
30 |
+
extracted_text = perform_ocr(image_path)
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Output the extracted text
|
33 |
+
print("Extracted Text:", extracted_text)
|