Vinay15's picture
Create app.py
9184993 verified
raw
history blame
1.18 kB
import gradio as gr
from transformers import AutoModel, AutoTokenizer
from PIL import Image
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
# Define the OCR function
def perform_ocr(image):
# Convert PIL image to RGB format (if necessary)
if image.mode != "RGB":
image = image.convert("RGB")
# Save the image to a temporary path
image_file_path = 'temp_image.jpg'
image.save(image_file_path)
# Perform OCR using the model
res = model.chat(tokenizer, image_file_path, ocr_type='ocr')
return res
# Define the Gradio interface
interface = gr.Interface(
fn=perform_ocr,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=gr.Textbox(label="Extracted Text"),
title="OCR and Document Search Web Application",
description="Upload an image to extract text using the GOT-OCR2_0 model."
)
# Launch the Gradio app
interface.launch()