Spaces:
Running
Running
import gradio as gr | |
from PIL import Image | |
import diffusers | |
from diffusers.models import AutoencoderKL | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") | |
def read_content(file_path: str) -> str: | |
"""read the content of target file | |
""" | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
def predict(prompt, negative_prompt, guidance_scale, num_inference_steps,model, scheduler, lora, lora_weight): | |
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/RealVisXL_V4.0").to("cuda") | |
if model == 'Realistic_V6.0': | |
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", vae=vae).to("cuda") | |
pipeline.safety_checker = lambda images, **kwargs: (images, [False] * len(images)) | |
if model == "Realistic_V5.1": | |
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", vae=vae).to("cuda") | |
if model == "Realistic_V5.0": | |
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.0_noVAE", vae=vae).to("cuda") | |
if model == "EpicRealism": | |
pipeline = diffusers.DiffusionPipeline.from_pretrained("emilianJR/epiCRealism", vae=vae).to("cuda") | |
pipeline.safety_checker = lambda images, **kwargs: (images, [False] * len(images)) | |
scheduler_class_name = scheduler.split("-")[0] | |
add_kwargs = {} | |
if len(scheduler.split("-")) > 1: | |
add_kwargs["use_karras_sigmas"] = True | |
if len(scheduler.split("-")) > 2: | |
add_kwargs["algorithm_type"] = "sde-dpmsolver++" | |
scheduler = getattr(diffusers, scheduler_class_name) | |
if model != "RealVisXL_V4.0": | |
pipeline.scheduler = scheduler.from_pretrained("emilianJR/epiCRealism", subfolder="scheduler", **add_kwargs) | |
if lora == "nayanthara": | |
lora = "profaker/Naya_lora" | |
if lora == "saipallavi": | |
lora = "profaker/saipallavi_lora" | |
if lora == "shobita": | |
lora = "profaker/Shobita_lora" | |
if lora == "surya": | |
lora = "profaker/Surya_lora" | |
if lora == "vijay": | |
lora = "profaker/Vijay_lora" | |
if lora == "None": | |
images = pipeline( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=int(num_inference_steps), | |
guidance_scale=guidance_scale, | |
clip_skip=1 | |
).images[0] | |
print("Prompt", prompt) | |
print("Negative", negative_prompt) | |
print("Steps", num_inference_steps) | |
print("Scale", guidance_scale) | |
print("Scheduler", scheduler) | |
return images | |
pipeline.load_lora_weights(lora) | |
images = pipeline( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=int(num_inference_steps), | |
guidance_scale=guidance_scale, | |
cross_attention_kwargs={"scale": lora_weight} | |
).images[0] | |
print("Prompt", prompt) | |
print("Negative", negative_prompt) | |
print("Steps", num_inference_steps) | |
print("Scale", guidance_scale) | |
print("Scheduler", scheduler) | |
return images | |
css = ''' | |
.gradio-container{max-width: 1100px !important} | |
#image_upload{min-height:400px} | |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} | |
#mask_radio .gr-form{background:transparent; border: none} | |
#word_mask{margin-top: .75em !important} | |
#word_mask textarea:disabled{opacity: 0.3} | |
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
.dark .footer {border-color: #303030} | |
.dark .footer>p {background: #0b0f19} | |
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
#image_upload .touch-none{display: flex} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#prompt-container{margin-top:-18px;} | |
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} | |
''' | |
image_blocks = gr.Blocks(css=css, elem_id="total-container") | |
with image_blocks as demo: | |
gr.HTML(read_content("header.html")) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(elem_id="prompt-container", equal_height=True): | |
with gr.Row(): | |
prompt = gr.Textbox(placeholder="Your prompt", show_label=False, elem_id="prompt", lines=5) | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(equal_height=True): | |
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale") | |
steps = gr.Number(value=40, minimum=0, maximum=100, step=1, label="steps") | |
with gr.Row(equal_height=True): | |
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", | |
info="what you don't want to see in the image") | |
with gr.Row(equal_height=True): | |
models = ['RealVisXL_V4.0','Realistic_V6.0','Realistic_V5.1','Realistic_V5.0','EpicRealism'] | |
model = gr.Dropdown(label="Models",choices=models,value="RealVisXL_V4.0") | |
with gr.Row(equal_height=True): | |
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", | |
"DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", | |
"DPMSolverMultistepScheduler-Karras-SDE"] | |
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, | |
value="DPMSolverMultistepScheduler-Karras") | |
with gr.Row(equal_height=True): | |
loras = ['None','add_detail','nayanthara','shobita','surya','vijay','saipallavi'] | |
lora = gr.Dropdown(label='Lora', choices=loras, value="None") | |
lora_weight = gr.Number(value=0, minimum=0, maximum=1, step=0.01, label="Lora Weights") | |
with gr.Row(equal_height=True): | |
btn = gr.Button("Generate", elem_id="run_button") | |
with gr.Column(): | |
image_out = gr.Image(label="Output", elem_id="output-img", height=1024, width=512) | |
btn.click(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, model,scheduler, lora, lora_weight], | |
outputs=[image_out], api_name='run') | |
prompt.submit(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, model,scheduler, lora, lora_weight], | |
outputs=[image_out]) | |
image_blocks.queue(max_size=25, api_open=True).launch(show_api=True) | |