Veucci's picture
Upscale Update
51e7097 verified
import cv2
import numpy as np
import gradio as gr
import random
def apply_cartoon_filter(frame):
"""Cartoon Filter"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11, 7)
color = cv2.bilateralFilter(frame, 9, 300, 300)
cartoon = cv2.bitwise_and(color, color, mask=edges)
return cartoon
def apply_neon_effect(frame):
"""Neon Light Filter"""
# Intensify colors
frame_neon = frame.copy().astype(np.float32)
frame_neon = np.clip(frame_neon * 1.5, 0, 255).astype(np.uint8)
# Highlight edges
edges = cv2.Canny(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), 100, 200)
edges_colored = cv2.applyColorMap(edges, cv2.COLORMAP_JET)
# Blend
result = cv2.addWeighted(frame_neon, 0.7, edges_colored, 0.3, 0)
return result
def apply_pixelate_effect(frame, pixel_size=15):
"""Pixelate Effect"""
h, w = frame.shape[:2]
small = cv2.resize(frame, (w//pixel_size, h//pixel_size), interpolation=cv2.INTER_LINEAR)
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
def apply_glitch_effect(frame):
"""Glitch Filter"""
glitched = frame.copy()
# Randomly shift color channels
glitched[:, :, 0] = np.roll(glitched[:, :, 0], random.randint(-50, 50), axis=0)
glitched[:, :, 1] = np.roll(glitched[:, :, 1], random.randint(-50, 50), axis=1)
# Add noise to random areas
noise = np.random.randint(0, 255, frame.shape, dtype=np.uint8)
glitched = cv2.addWeighted(glitched, 0.7, noise, 0.3, 0)
return glitched
def apply_watercolor_effect(frame):
"""Watercolor Effect"""
# Smooth using bilateral filtering
frame_soft = cv2.bilateralFilter(frame, 9, 75, 75)
# Highlight edges
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200)
edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
# Blend
result = cv2.addWeighted(frame_soft, 0.8, edges, 0.2, 0)
return result
def apply_upscale(frame, scale_factor=1.5):
"""
Upscaling Effect
Args:
frame (numpy.ndarray): Input Image
scale_factor (float): Scaling Factor (default 1.5)
Returns:
numpy.ndarray: Upscaled Image
"""
interpolation_methods = [
cv2.INTER_CUBIC,
cv2.INTER_LANCZOS4
]
method = random.choice(interpolation_methods)
height, width = frame.shape[:2]
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
upscaled = cv2.resize(frame, (new_width, new_height), interpolation=method)
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpened = cv2.filter2D(upscaled, -1, kernel)
return sharpened
def apply_filter(filter_type, input_image=None):
if input_image is None:
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if not ret:
return "Failed to capture image from webcam"
else:
frame = input_image
if filter_type == "Upscale":
return apply_upscale(frame)
elif filter_type == "Cartoon":
return apply_cartoon_filter(frame)
elif filter_type == "Neon Light":
return apply_neon_effect(frame)
elif filter_type == "Pixelate":
return apply_pixelate_effect(frame)
elif filter_type == "Glitch":
return apply_glitch_effect(frame)
elif filter_type == "Watercolor":
return apply_watercolor_effect(frame)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown('# <p align="center"> OpenCV Image Effects </p>')
# Filter options
filter_type = gr.Dropdown(
label="Select Filter",
choices=["Upscale","Cartoon", "Neon Light", "Pixelate", "Glitch", "Watercolor"],
value="Upscale"
)
with gr.Row():
input_image = gr.Image(label="Upload Image", type="numpy")
output_image = gr.Image(label="Filtered Image")
# Apply filter button
apply_button = gr.Button("Apply Filter")
# Apply filter function on button click
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
demo.launch()