danf0 commited on
Commit
c242702
·
1 Parent(s): d10ec79

Remove images

Browse files
Files changed (2) hide show
  1. README.md +4 -30
  2. vendiscore.py +20 -30
README.md CHANGED
@@ -55,7 +55,7 @@ To calculate the score, pass a list of samples and a similarity function or a st
55
  - **k**: a pairwise similarity function, or a string identifying a predefined
56
  similarity function. If k is a pairwise similarity function, it should
57
  be symmetric and k(x, x) = 1.
58
- Options: ngram_overlap, text_embeddings, pixels, image_embeddings.
59
  - **score_K**: if true, samples is an n x n similarity matrix K.
60
  - **score_X**: if true, samples is an n x d feature matrix X.
61
  - **score_dual**: if true, samples is an n x d feature matrix X and we will
@@ -63,20 +63,15 @@ To calculate the score, pass a list of samples and a similarity function or a st
63
  - **normalize**: if true, normalize the similarity scores.
64
  - **model (optional)**: if k is "text_embeddings", a model mapping sentences to
65
  embeddings (output should be an object with an attribute called
66
- `pooler_output` or `last_hidden_state`). If k is "image_embeddings", a
67
- model mapping images to embeddings.
68
  - **tokenizer (optional)**: if k is "text_embeddings" or "ngram_overlap", a
69
  tokenizer mapping strings to lists.
70
- - **transform (optional)**: if k is "image_embeddings", a torchvision transform
71
- to apply to the samples.
72
  - **model_path (optional)**: if k is "text_embeddings", the name of a model on
73
  the HuggingFace hub.
74
  - **ns (optional)**: if k is "ngram_overlap", the values of n to calculate.
75
- - **batch_size (optional)**: batch size to use if k is "text_embedding" or
76
- "image_embedding".
77
  - **device (optional)**: a string (e.g. "cuda", "cpu") or torch.device
78
- identifying the device to use if k is "text_embedding"
79
- or "image_embedding".
80
 
81
 
82
  ### Output Values
@@ -116,27 +111,6 @@ to compute the Vendi Score using the covariance matrix, `X @ X.T`.
116
  {'VS': 1.99989...}
117
  ```
118
 
119
- Image similarity can be calculated using inner products between pixel vectors or between embeddings from a neural network.
120
- The default embeddings are from the pool-2048 layer of the torchvision version of the Inception v3 model; other embedding functions can be passed to the `model` argument.
121
- ```
122
- >>> from torchvision import datasets
123
- >>> mnist = datasets.MNIST("data/mnist", train=False, download=True)
124
- >>> digits = [[x for x, y in mnist if y == c] for c in range(10)]
125
- >>> pixel_vs = [vendiscore.compute(samples=imgs, k="pixels") for imgs in digits]
126
- >>> inception_vs = [vendiscore.compute(samples=imgs, k="image_embeddings", batch_size=64, device="cuda") for imgs in digits]
127
- >>> for y, (pvs, ivs) in enumerate(zip(pixel_vs, inception_vs)): print(f"{y}\t{pvs:.02f}\t{ivs:02f}")
128
- 0 7.68 3.45
129
- 1 5.31 3.50
130
- 2 12.18 3.62
131
- 3 9.97 2.97
132
- 4 11.10 3.75
133
- 5 13.51 3.16
134
- 6 9.06 3.63
135
- 7 9.58 4.07
136
- 8 9.69 3.74
137
- 9 8.56 3.43
138
- ```
139
-
140
  Text similarity can be calculated using n-gram overlap or using inner products between embeddings from a neural network.
141
  ```
142
  >>> vendiscore = evaluate.load("danf0/vendiscore", "text")
 
55
  - **k**: a pairwise similarity function, or a string identifying a predefined
56
  similarity function. If k is a pairwise similarity function, it should
57
  be symmetric and k(x, x) = 1.
58
+ Options: ngram_overlap, text_embeddings.
59
  - **score_K**: if true, samples is an n x n similarity matrix K.
60
  - **score_X**: if true, samples is an n x d feature matrix X.
61
  - **score_dual**: if true, samples is an n x d feature matrix X and we will
 
63
  - **normalize**: if true, normalize the similarity scores.
64
  - **model (optional)**: if k is "text_embeddings", a model mapping sentences to
65
  embeddings (output should be an object with an attribute called
66
+ `pooler_output` or `last_hidden_state`).
 
67
  - **tokenizer (optional)**: if k is "text_embeddings" or "ngram_overlap", a
68
  tokenizer mapping strings to lists.
 
 
69
  - **model_path (optional)**: if k is "text_embeddings", the name of a model on
70
  the HuggingFace hub.
71
  - **ns (optional)**: if k is "ngram_overlap", the values of n to calculate.
72
+ - **batch_size (optional)**: batch size to use if k is "text_embedding".
 
73
  - **device (optional)**: a string (e.g. "cuda", "cpu") or torch.device
74
+ identifying the device to use if k is "text_embedding".
 
75
 
76
 
77
  ### Output Values
 
111
  {'VS': 1.99989...}
112
  ```
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  Text similarity can be calculated using n-gram overlap or using inner products between embeddings from a neural network.
115
  ```
116
  >>> vendiscore = evaluate.load("danf0/vendiscore", "text")
vendiscore.py CHANGED
@@ -14,10 +14,8 @@
14
  import evaluate
15
  import datasets
16
  import numpy as np
17
- import PIL
18
- from PIL import Image
19
 
20
- from vendi_score import vendi, image_utils, text_utils
21
 
22
  # TODO: Add BibTeX citation
23
  _CITATION = ""
@@ -36,30 +34,26 @@ Args:
36
  matrix K, or an n x d feature matrix X.
37
  k: a pairwise similarity function, or a string identifying a predefined
38
  similarity function.
39
- Options: ngram_overlap, text_embeddings, pixels, image_embeddings.
40
  score_K: if true, samples is an n x n similarity matrix K.
41
  score_X: if true, samples is an n x d feature matrix X.
42
  score_dual: if true, compute diversity score of X @ X.T.
43
  normalize: if true, normalize the similarity scores.
44
  model (optional): if k is "text_embeddings", a model mapping sentences to
45
  embeddings (output should be an object with an attribute called
46
- `pooler_output` or `last_hidden_state`). If k is "image_embeddings", a
47
- model mapping images to embeddings.
48
  tokenizer (optional): if k is "text_embeddings" or "ngram_overlap", a
49
  tokenizer mapping strings to lists.
50
- transform (optional): if k is "image_embeddings", a torchvision transform
51
- to apply to the samples.
52
  model_path (optional): if k is "text_embeddings", the name of a model on the
53
  HuggingFace hub.
54
  ns (optional): if k is "ngram_overlap", the values of n to calculate.
55
- batch_size (optional): batch size to use if k is "text_embedding" or
56
- "image_embedding".
57
  device (optional): a string (e.g. "cuda", "cpu") or torch.device identifying
58
- the device to use if k is "text_embedding or "image_embedding".
59
  Returns:
60
  VS: The Vendi Score.
61
  Examples:
62
- >>> vendiscore = evaluate.load("danf0/vendiscore")
63
  >>> samples = ["Look, Jane.",
64
  "See Spot.",
65
  "See Spot run.",
@@ -74,11 +68,8 @@ Examples:
74
  def get_features(config_name):
75
  if config_name in ("text", "default"):
76
  return datasets.Features({"samples": datasets.Value("string")})
77
- if config_name == "image":
78
- return [
79
- datasets.Features({"samples": datasets.Array2D}),
80
- datasets.Features({"samples": datasets.Array3D}),
81
- ]
82
  if config_name in ("K", "X"):
83
  return [
84
  datasets.Features(
@@ -130,7 +121,6 @@ class VendiScore(evaluate.Metric):
130
  normalize=False,
131
  model=None,
132
  tokenizer=None,
133
- transform=None,
134
  model_path=None,
135
  ns=[1, 2],
136
  batch_size=16,
@@ -155,18 +145,18 @@ class VendiScore(evaluate.Metric):
155
  device=device,
156
  model_path=model_path,
157
  )
158
- elif type(k) == str and k == "pixels":
159
- vs = image_utils.pixel_vendi_score(
160
- [Image.fromarray(x) for x in samples]
161
- )
162
- elif type(k) == str and k == "image_embeddings":
163
- vs = image_utils.embedding_vendi_score(
164
- [Image.fromarray(x) for x in samples],
165
- batch_size=batch_size,
166
- device=device,
167
- model=model,
168
- transform=transform,
169
- )
170
  else:
171
  vs = vendi.score(samples, k)
172
  return {"VS": vs}
 
14
  import evaluate
15
  import datasets
16
  import numpy as np
 
 
17
 
18
+ from vendi_score import vendi, text_utils
19
 
20
  # TODO: Add BibTeX citation
21
  _CITATION = ""
 
34
  matrix K, or an n x d feature matrix X.
35
  k: a pairwise similarity function, or a string identifying a predefined
36
  similarity function.
37
+ Options: ngram_overlap, text_embeddings.
38
  score_K: if true, samples is an n x n similarity matrix K.
39
  score_X: if true, samples is an n x d feature matrix X.
40
  score_dual: if true, compute diversity score of X @ X.T.
41
  normalize: if true, normalize the similarity scores.
42
  model (optional): if k is "text_embeddings", a model mapping sentences to
43
  embeddings (output should be an object with an attribute called
44
+ `pooler_output` or `last_hidden_state`).
 
45
  tokenizer (optional): if k is "text_embeddings" or "ngram_overlap", a
46
  tokenizer mapping strings to lists.
 
 
47
  model_path (optional): if k is "text_embeddings", the name of a model on the
48
  HuggingFace hub.
49
  ns (optional): if k is "ngram_overlap", the values of n to calculate.
50
+ batch_size (optional): batch size to use if k is "text_embedding".
 
51
  device (optional): a string (e.g. "cuda", "cpu") or torch.device identifying
52
+ the device to use if k is "text_embedding".
53
  Returns:
54
  VS: The Vendi Score.
55
  Examples:
56
+ >>> vendiscore = evaluate.load("danf0/vendiscore", "text")
57
  >>> samples = ["Look, Jane.",
58
  "See Spot.",
59
  "See Spot run.",
 
68
  def get_features(config_name):
69
  if config_name in ("text", "default"):
70
  return datasets.Features({"samples": datasets.Value("string")})
71
+ # if config_name == "image":
72
+ # return datasets.Features({"samples": datasets.Image})
 
 
 
73
  if config_name in ("K", "X"):
74
  return [
75
  datasets.Features(
 
121
  normalize=False,
122
  model=None,
123
  tokenizer=None,
 
124
  model_path=None,
125
  ns=[1, 2],
126
  batch_size=16,
 
145
  device=device,
146
  model_path=model_path,
147
  )
148
+ # elif type(k) == str and k == "pixels":
149
+ # vs = image_utils.pixel_vendi_score(
150
+ # [Image.fromarray(x) for x in samples]
151
+ # )
152
+ # elif type(k) == str and k == "image_embeddings":
153
+ # vs = image_utils.embedding_vendi_score(
154
+ # [Image.fromarray(x) for x in samples],
155
+ # batch_size=batch_size,
156
+ # device=device,
157
+ # model=model,
158
+ # transform=transform,
159
+ # )
160
  else:
161
  vs = vendi.score(samples, k)
162
  return {"VS": vs}