danf0 commited on
Commit
ba0c789
·
1 Parent(s): fe55490

Update space name

Browse files
Files changed (2) hide show
  1. README.md +5 -5
  2. vendiscore.py +1 -1
README.md CHANGED
@@ -41,7 +41,7 @@ pip install vendi_score[all]
41
  ```
42
  To calculate the score, pass a list of samples and a similarity function or a string identifying a predefined class of similarity functions (see below).
43
  ```
44
- >>> vendiscore = evaluate.load("danf0/vendiscore")
45
  >>> samples = ["Look, Jane.",
46
  "See Spot.",
47
  "See Spot run.",
@@ -86,7 +86,7 @@ Given n samples, the value of the Vendi Score ranges between 1 and n, with highe
86
 
87
  ```
88
  >>> import numpy as np
89
- >>> vendiscore = evaluate.load("danf0/vendiscore", "int")
90
  >>> samples = [0, 0, 10, 10, 20, 20]
91
  >>> k = lambda a, b: np.exp(-np.abs(a - b))
92
  >>> vendiscore.compute(samples=samples, k=k)
@@ -95,7 +95,7 @@ Given n samples, the value of the Vendi Score ranges between 1 and n, with highe
95
 
96
  If you already have precomputed a similarity matrix:
97
  ```
98
- >>> vendiscore = evaluate.load("danf0/vendiscore", "K")
99
  >>> K = np.array([[1.0, 0.9, 0.0],
100
  [0.9, 1.0, 0.0],
101
  [0.0, 0.0, 1.0]])
@@ -108,7 +108,7 @@ If your similarity function is a dot product between `n` normalized
108
  to compute the Vendi Score using the covariance matrix, `X @ X.T`.
109
  (If the rows of `X` are not normalized, set `normalize = True`.)
110
  ```
111
- >>> vendiscore = evaluate.load("danf0/vendiscore", "X")
112
  >>> X = np.array([[100, 0], [99, 1], [1, 99], [0, 100]])
113
  >>> vendiscore.compute(samples=X, score_dual=True, normalize=True)
114
  {'VS': 1.99989...}
@@ -116,7 +116,7 @@ to compute the Vendi Score using the covariance matrix, `X @ X.T`.
116
 
117
  Text similarity can be calculated using n-gram overlap or using inner products between embeddings from a neural network.
118
  ```
119
- >>> vendiscore = evaluate.load("danf0/vendiscore", "text")
120
  >>> sents = ["Look, Jane.", "See Spot.", "See Spot run.", "Run, Spot, run.", "Jane sees Spot run."]
121
  >>> ngram_vs = vendiscore.compute(samples=sents, k="ngram_overlap", ns=[1, 2])["VS"]
122
  >>> bert_vs = vendiscore.compute(samples=sents, k="text_embeddings", model_path="bert-base-uncased")["VS"]
 
41
  ```
42
  To calculate the score, pass a list of samples and a similarity function or a string identifying a predefined class of similarity functions (see below).
43
  ```
44
+ >>> vendiscore = evaluate.load("Vertaix/vendiscore")
45
  >>> samples = ["Look, Jane.",
46
  "See Spot.",
47
  "See Spot run.",
 
86
 
87
  ```
88
  >>> import numpy as np
89
+ >>> vendiscore = evaluate.load("Vertaix/vendiscore", "int")
90
  >>> samples = [0, 0, 10, 10, 20, 20]
91
  >>> k = lambda a, b: np.exp(-np.abs(a - b))
92
  >>> vendiscore.compute(samples=samples, k=k)
 
95
 
96
  If you already have precomputed a similarity matrix:
97
  ```
98
+ >>> vendiscore = evaluate.load("Vertaix/vendiscore", "K")
99
  >>> K = np.array([[1.0, 0.9, 0.0],
100
  [0.9, 1.0, 0.0],
101
  [0.0, 0.0, 1.0]])
 
108
  to compute the Vendi Score using the covariance matrix, `X @ X.T`.
109
  (If the rows of `X` are not normalized, set `normalize = True`.)
110
  ```
111
+ >>> vendiscore = evaluate.load("Vertaix/vendiscore", "X")
112
  >>> X = np.array([[100, 0], [99, 1], [1, 99], [0, 100]])
113
  >>> vendiscore.compute(samples=X, score_dual=True, normalize=True)
114
  {'VS': 1.99989...}
 
116
 
117
  Text similarity can be calculated using n-gram overlap or using inner products between embeddings from a neural network.
118
  ```
119
+ >>> vendiscore = evaluate.load("Vertaix/vendiscore", "text")
120
  >>> sents = ["Look, Jane.", "See Spot.", "See Spot run.", "Run, Spot, run.", "Jane sees Spot run."]
121
  >>> ngram_vs = vendiscore.compute(samples=sents, k="ngram_overlap", ns=[1, 2])["VS"]
122
  >>> bert_vs = vendiscore.compute(samples=sents, k="text_embeddings", model_path="bert-base-uncased")["VS"]
vendiscore.py CHANGED
@@ -53,7 +53,7 @@ Args:
53
  Returns:
54
  VS: The Vendi Score.
55
  Examples:
56
- >>> vendiscore = evaluate.load("danf0/vendiscore", "text")
57
  >>> samples = ["Look, Jane.",
58
  "See Spot.",
59
  "See Spot run.",
 
53
  Returns:
54
  VS: The Vendi Score.
55
  Examples:
56
+ >>> vendiscore = evaluate.load("Vertaix/vendiscore", "text")
57
  >>> samples = ["Look, Jane.",
58
  "See Spot.",
59
  "See Spot run.",