Spaces:
Build error
Build error
Update the examples.
Browse files
README.md
CHANGED
@@ -44,7 +44,7 @@ To calculate the score, pass a list of samples and a similarity function or a st
|
|
44 |
"See Spot run.",
|
45 |
"Run, Spot, run.",
|
46 |
"Jane sees Spot run."]
|
47 |
-
>>> results = vendiscore.compute(samples, k="ngram_overlap", ns=[1, 2])
|
48 |
>>> print(results)
|
49 |
{'VS': 3.90657...}
|
50 |
```
|
@@ -91,7 +91,7 @@ Given n samples, the value of the Vendi Score ranges between 1 and n, with highe
|
|
91 |
>>> vendiscore = evaluate.load("danf0/vendiscore")
|
92 |
>>> samples = [0, 0, 10, 10, 20, 20]
|
93 |
>>> k = lambda a, b: np.exp(-np.abs(a - b))
|
94 |
-
>>> vendiscore.compute(samples, k)
|
95 |
2.9999
|
96 |
```
|
97 |
|
@@ -100,7 +100,7 @@ If you already have precomputed a similarity matrix:
|
|
100 |
>>> K = np.array([[1.0, 0.9, 0.0],
|
101 |
[0.9, 1.0, 0.0],
|
102 |
[0.0, 0.0, 1.0]])
|
103 |
-
>>> vendiscore.compute(K, score_K=True)
|
104 |
2.1573
|
105 |
```
|
106 |
|
@@ -110,7 +110,7 @@ to compute the Vendi Score using the covariance matrix, `X @ X.T`.
|
|
110 |
(If the rows of `X` are not normalized, set `normalize = True`.)
|
111 |
```
|
112 |
>>> X = np.array([[100, 0], [99, 1], [1, 99], [0, 100])
|
113 |
-
>>> vendiscore.compute(X, score_dual=True, normalize=True)
|
114 |
1.9989...
|
115 |
```
|
116 |
|
@@ -120,8 +120,8 @@ The default embeddings are from the pool-2048 layer of the torchvision version o
|
|
120 |
>>> from torchvision import datasets
|
121 |
>>> mnist = datasets.MNIST("data/mnist", train=False, download=True)
|
122 |
>>> digits = [[x for x, y in mnist if y == c] for c in range(10)]
|
123 |
-
>>> pixel_vs = [vendiscore.compute(imgs, k="pixels") for imgs in digits]
|
124 |
-
>>> inception_vs = [vendiscore.compute(imgs, k="image_embeddings", batch_size=64, device="cuda") for imgs in digits]
|
125 |
>>> for y, (pvs, ivs) in enumerate(zip(pixel_vs, inception_vs)): print(f"{y}\t{pvs:.02f}\t{ivs:02f}")
|
126 |
0 7.68 3.45
|
127 |
1 5.31 3.50
|
@@ -142,9 +142,9 @@ Text similarity can be calculated using n-gram overlap or using inner products b
|
|
142 |
"See Spot run.",
|
143 |
"Run, Spot, run.",
|
144 |
"Jane sees Spot run."]
|
145 |
-
>>> ngram_vs = vendiscore.compute(sents, k="ngram_overlap", ns=[1, 2])
|
146 |
-
>>> bert_vs = vendiscore.compute(sents, k="text_embeddings", model_path="bert-base-uncased")
|
147 |
-
>>> simcse_vs = vendiscore.compute(sents, k="text_embeddings", model_path="princeton-nlp/unsup-simcse-bert-base-uncased")
|
148 |
>>> print(f"N-grams: {ngram_vs:.02f}, BERT: {bert_vs:.02f}, SimCSE: {simcse_vs:.02f})
|
149 |
N-grams: 3.91, BERT: 1.21, SimCSE: 2.81
|
150 |
```
|
|
|
44 |
"See Spot run.",
|
45 |
"Run, Spot, run.",
|
46 |
"Jane sees Spot run."]
|
47 |
+
>>> results = vendiscore.compute(samples=samples, k="ngram_overlap", ns=[1, 2])
|
48 |
>>> print(results)
|
49 |
{'VS': 3.90657...}
|
50 |
```
|
|
|
91 |
>>> vendiscore = evaluate.load("danf0/vendiscore")
|
92 |
>>> samples = [0, 0, 10, 10, 20, 20]
|
93 |
>>> k = lambda a, b: np.exp(-np.abs(a - b))
|
94 |
+
>>> vendiscore.compute(samples=samples, k=k)
|
95 |
2.9999
|
96 |
```
|
97 |
|
|
|
100 |
>>> K = np.array([[1.0, 0.9, 0.0],
|
101 |
[0.9, 1.0, 0.0],
|
102 |
[0.0, 0.0, 1.0]])
|
103 |
+
>>> vendiscore.compute(samples=K, score_K=True)
|
104 |
2.1573
|
105 |
```
|
106 |
|
|
|
110 |
(If the rows of `X` are not normalized, set `normalize = True`.)
|
111 |
```
|
112 |
>>> X = np.array([[100, 0], [99, 1], [1, 99], [0, 100])
|
113 |
+
>>> vendiscore.compute(samples=X, score_dual=True, normalize=True)
|
114 |
1.9989...
|
115 |
```
|
116 |
|
|
|
120 |
>>> from torchvision import datasets
|
121 |
>>> mnist = datasets.MNIST("data/mnist", train=False, download=True)
|
122 |
>>> digits = [[x for x, y in mnist if y == c] for c in range(10)]
|
123 |
+
>>> pixel_vs = [vendiscore.compute(samples=imgs, k="pixels") for imgs in digits]
|
124 |
+
>>> inception_vs = [vendiscore.compute(samples=imgs, k="image_embeddings", batch_size=64, device="cuda") for imgs in digits]
|
125 |
>>> for y, (pvs, ivs) in enumerate(zip(pixel_vs, inception_vs)): print(f"{y}\t{pvs:.02f}\t{ivs:02f}")
|
126 |
0 7.68 3.45
|
127 |
1 5.31 3.50
|
|
|
142 |
"See Spot run.",
|
143 |
"Run, Spot, run.",
|
144 |
"Jane sees Spot run."]
|
145 |
+
>>> ngram_vs = vendiscore.compute(samples=sents, k="ngram_overlap", ns=[1, 2])
|
146 |
+
>>> bert_vs = vendiscore.compute(samples=sents, k="text_embeddings", model_path="bert-base-uncased")
|
147 |
+
>>> simcse_vs = vendiscore.compute(samples=sents, k="text_embeddings", model_path="princeton-nlp/unsup-simcse-bert-base-uncased")
|
148 |
>>> print(f"N-grams: {ngram_vs:.02f}, BERT: {bert_vs:.02f}, SimCSE: {simcse_vs:.02f})
|
149 |
N-grams: 3.91, BERT: 1.21, SimCSE: 2.81
|
150 |
```
|