danf0 commited on
Commit
3258b73
·
1 Parent(s): 11c5d24

Process images as numpy arrays

Browse files
Files changed (2) hide show
  1. README.md +12 -14
  2. vendiscore.py +7 -16
README.md CHANGED
@@ -92,16 +92,17 @@ Given n samples, the value of the Vendi Score ranges between 1 and n, with highe
92
  >>> samples = [0, 0, 10, 10, 20, 20]
93
  >>> k = lambda a, b: np.exp(-np.abs(a - b))
94
  >>> vendiscore.compute(samples=samples, k=k)
95
- {"VS": 2.9999...}
96
  ```
97
 
98
  If you already have precomputed a similarity matrix:
99
  ```
 
100
  >>> K = np.array([[1.0, 0.9, 0.0],
101
  [0.9, 1.0, 0.0],
102
  [0.0, 0.0, 1.0]])
103
  >>> vendiscore.compute(samples=K, score_K=True)
104
- 2.1573
105
  ```
106
 
107
  If your similarity function is a dot product between `n` normalized
@@ -109,9 +110,10 @@ If your similarity function is a dot product between `n` normalized
109
  to compute the Vendi Score using the covariance matrix, `X @ X.T`.
110
  (If the rows of `X` are not normalized, set `normalize = True`.)
111
  ```
112
- >>> X = np.array([[100, 0], [99, 1], [1, 99], [0, 100])
 
113
  >>> vendiscore.compute(samples=X, score_dual=True, normalize=True)
114
- 1.9989...
115
  ```
116
 
117
  Image similarity can be calculated using inner products between pixel vectors or between embeddings from a neural network.
@@ -137,16 +139,12 @@ The default embeddings are from the pool-2048 layer of the torchvision version o
137
 
138
  Text similarity can be calculated using n-gram overlap or using inner products between embeddings from a neural network.
139
  ```
140
- >>> sents = ["Look, Jane.",
141
- "See Spot.",
142
- "See Spot run.",
143
- "Run, Spot, run.",
144
- "Jane sees Spot run."]
145
- >>> ngram_vs = vendiscore.compute(samples=sents, k="ngram_overlap", ns=[1, 2])
146
- >>> bert_vs = vendiscore.compute(samples=sents, k="text_embeddings", model_path="bert-base-uncased")
147
- >>> simcse_vs = vendiscore.compute(samples=sents, k="text_embeddings", model_path="princeton-nlp/unsup-simcse-bert-base-uncased")
148
- >>> print(f"N-grams: {ngram_vs:.02f}, BERT: {bert_vs:.02f}, SimCSE: {simcse_vs:.02f})
149
- N-grams: 3.91, BERT: 1.21, SimCSE: 2.81
150
  ```
151
 
152
  ## Limitations and Bias
 
92
  >>> samples = [0, 0, 10, 10, 20, 20]
93
  >>> k = lambda a, b: np.exp(-np.abs(a - b))
94
  >>> vendiscore.compute(samples=samples, k=k)
95
+ {'VS': 2.9999...}
96
  ```
97
 
98
  If you already have precomputed a similarity matrix:
99
  ```
100
+ >>> vendiscore = evaluate.load("danf0/vendiscore", "K")
101
  >>> K = np.array([[1.0, 0.9, 0.0],
102
  [0.9, 1.0, 0.0],
103
  [0.0, 0.0, 1.0]])
104
  >>> vendiscore.compute(samples=K, score_K=True)
105
+ {'VS': 2.1573...}
106
  ```
107
 
108
  If your similarity function is a dot product between `n` normalized
 
110
  to compute the Vendi Score using the covariance matrix, `X @ X.T`.
111
  (If the rows of `X` are not normalized, set `normalize = True`.)
112
  ```
113
+ >>> vendiscore = evaluate.load("danf0/vendiscore", "X")
114
+ >>> X = np.array([[100, 0], [99, 1], [1, 99], [0, 100]])
115
  >>> vendiscore.compute(samples=X, score_dual=True, normalize=True)
116
+ {'VS': 1.99989...}
117
  ```
118
 
119
  Image similarity can be calculated using inner products between pixel vectors or between embeddings from a neural network.
 
139
 
140
  Text similarity can be calculated using n-gram overlap or using inner products between embeddings from a neural network.
141
  ```
142
+ >>> vendiscore = evaluate.load("danf0/vendiscore", "text")
143
+ >>> sents = ["Look, Jane.", "See Spot.", "See Spot run.", "Run, Spot, run.", "Jane sees Spot run."]
144
+ >>> ngram_vs = vendiscore.compute(samples=sents, k="ngram_overlap", ns=[1, 2])["VS"]
145
+ >>> bert_vs = vendiscore.compute(samples=sents, k="text_embeddings", model_path="bert-base-uncased")["VS"]
146
+ >>> print(f"N-grams: {ngram_vs:.02f}, BERT: {bert_vs:.02f}")
147
+ N-grams: 3.91, BERT: 1.21
 
 
 
 
148
  ```
149
 
150
  ## Limitations and Bias
vendiscore.py CHANGED
@@ -14,6 +14,8 @@
14
  import evaluate
15
  import datasets
16
  import numpy as np
 
 
17
 
18
  from vendi_score import vendi, image_utils, text_utils
19
 
@@ -69,24 +71,11 @@ Examples:
69
  """
70
 
71
 
72
- def get_dtype(config_name):
73
- if config_name == "text":
74
- return datasets.Features({"samples": datasets.Value("string")})
75
- if config_name == "image":
76
- return datasets.Features({"samples": datasets.Image})
77
- elif config_name in ("X", "K"):
78
- return datasets.Array2D
79
- elif config_name == "default":
80
- return datasets.Value("string")
81
- else:
82
- return datasets.Value(config_name)
83
-
84
-
85
  def get_features(config_name):
86
  if config_name in ("text", "default"):
87
  return datasets.Features({"samples": datasets.Value("string")})
88
  if config_name == "image":
89
- return datasets.Features({"samples": datasets.Image})
90
  if config_name in ("K", "X"):
91
  return [
92
  datasets.Features(
@@ -164,10 +153,12 @@ class VendiScore(evaluate.Metric):
164
  model_path=model_path,
165
  )
166
  elif type(k) == str and k == "pixels":
167
- vs = image_utils.pixel_vendi_score(samples)
 
 
168
  elif type(k) == str and k == "image_embeddings":
169
  vs = image_utils.embedding_vendi_score(
170
- samples,
171
  batch_size=batch_size,
172
  device=device,
173
  model=model,
 
14
  import evaluate
15
  import datasets
16
  import numpy as np
17
+ import PIL
18
+ from PIL import Image
19
 
20
  from vendi_score import vendi, image_utils, text_utils
21
 
 
71
  """
72
 
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  def get_features(config_name):
75
  if config_name in ("text", "default"):
76
  return datasets.Features({"samples": datasets.Value("string")})
77
  if config_name == "image":
78
+ return datasets.Features({"samples": datasets.Array3D})
79
  if config_name in ("K", "X"):
80
  return [
81
  datasets.Features(
 
153
  model_path=model_path,
154
  )
155
  elif type(k) == str and k == "pixels":
156
+ vs = image_utils.pixel_vendi_score(
157
+ [Image.fromarray(x) for x in samples]
158
+ )
159
  elif type(k) == str and k == "image_embeddings":
160
  vs = image_utils.embedding_vendi_score(
161
+ [Image.fromarray(x) for x in samples],
162
  batch_size=batch_size,
163
  device=device,
164
  model=model,