Spaces:
Sleeping
Sleeping
added app.py
Browse files- README.md +1 -1
- app.py +80 -0
- efficientnet_epoch=18_loss=0.0020_val_f1score=0.8993.pth +3 -0
- idx_to_class.json +1 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: AvianVision
|
3 |
-
emoji:
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: AvianVision
|
3 |
+
emoji:
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models import EfficientNet
|
2 |
+
from utils import get_device
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
from PIL import Image
|
9 |
+
import json
|
10 |
+
import timm
|
11 |
+
from torch import nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
def load_efficientnet_model(model_path: str, device=get_device()):
|
15 |
+
"""
|
16 |
+
Load a PyTorch model checkpoint.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
model_path: The path of the checkpoint file.
|
20 |
+
device: The device to load the model onto.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
The model loaded onto the specified device.
|
24 |
+
"""
|
25 |
+
# Initialize model
|
26 |
+
model = EfficientNet()
|
27 |
+
|
28 |
+
# Load model weights onto the specified device
|
29 |
+
model.load_state_dict(torch.load(model_path, map_location=device)['model_state_dict'])
|
30 |
+
|
31 |
+
# Set model to evaluation mode
|
32 |
+
model.eval()
|
33 |
+
|
34 |
+
return model
|
35 |
+
|
36 |
+
with open('idx_to_class.json', 'r') as f:
|
37 |
+
idx_to_class = json.load(f)
|
38 |
+
|
39 |
+
|
40 |
+
def predict_image(array):
|
41 |
+
"""
|
42 |
+
Predict the class of an image.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
array: The image data as an array.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
The predicted class.
|
49 |
+
"""
|
50 |
+
# Convert the image to a PIL Image object
|
51 |
+
input_image = Image.fromarray(array)
|
52 |
+
|
53 |
+
# Load the model
|
54 |
+
model = load_efficientnet_model('/home/vedmani/Downloads/efficientnet_epoch=18_loss=0.0020_val_f1score=0.8993.pth')
|
55 |
+
|
56 |
+
# Transform the image
|
57 |
+
transform = transforms.Compose([
|
58 |
+
transforms.Resize(size=(150, 150)),
|
59 |
+
transforms.ToTensor(),
|
60 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
61 |
+
])
|
62 |
+
image = transform(input_image).unsqueeze(0)
|
63 |
+
image.to(get_device())
|
64 |
+
|
65 |
+
# Predict the class
|
66 |
+
with torch.no_grad():
|
67 |
+
output = model(image)
|
68 |
+
# Apply softmax to the outputs to convert them into probabilities
|
69 |
+
probabilities = F.softmax(output, dim=1)
|
70 |
+
predicted = probabilities.argmax().item()
|
71 |
+
predicted_class = idx_to_class[str(predicted)] # Make sure your keys in json are string type
|
72 |
+
|
73 |
+
return predicted_class
|
74 |
+
|
75 |
+
|
76 |
+
# Create the image classifier
|
77 |
+
image_classifier = gr.Interface(fn=predict_image, inputs="image", outputs="text", allow_flagging='Never')
|
78 |
+
|
79 |
+
# Launch the image classifier
|
80 |
+
image_classifier.launch(share=True)
|
efficientnet_epoch=18_loss=0.0020_val_f1score=0.8993.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86679a9101ac637ac321200f69d807b92d8c7419879111a8f598cd24d7987445
|
3 |
+
size 49005075
|
idx_to_class.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"0": "Asian-Green-Bee-Eater", "1": "Brown-Headed-Barbet", "2": "Cattle-Egret", "3": "Common-Kingfisher", "4": "Common-Myna", "5": "Common-Rosefinch", "6": "Common-Tailorbird", "7": "Coppersmith-Barbet", "8": "Forest-Wagtail", "9": "Gray-Wagtail", "10": "Hoopoe", "11": "House-Crow", "12": "Indian-Grey-Hornbill", "13": "Indian-Peacock", "14": "Indian-Pitta", "15": "Indian-Roller", "16": "Jungle-Babbler", "17": "Northern-Lapwing", "18": "Red-Wattled-Lapwing", "19": "Ruddy-Shelduck", "20": "Rufous-Treepie", "21": "Sarus-Crane", "22": "White-Breasted-Kingfisher", "23": "White-Breasted-Waterhen", "24": "White-Wagtail"}
|